

Designing cryptographic algorithms with physical attack resistance in mind

Silvia Mella

Institute for Computing and Information Sciences, Radboud University

June 5, 2025

Radboud Universiteit

WHO AM I?

- Assistant professor @Radboud University
 - Design and analysis of cryptographic permutations
 - Hardware implementations
 - Side-channel attacks
- Post-doc @Radboud University
 - Same stuff
- Cryptographer @STMicroelectronics, Italy
 - Hardware accelerators for public-key crypto
 - Design, verification, pre-silicon side-channel and fault attacks evaluations
- PhD in CS @University of Milano, Italy
 - Crypto
- Bachelor and Master in Math @University of Milano, Italy

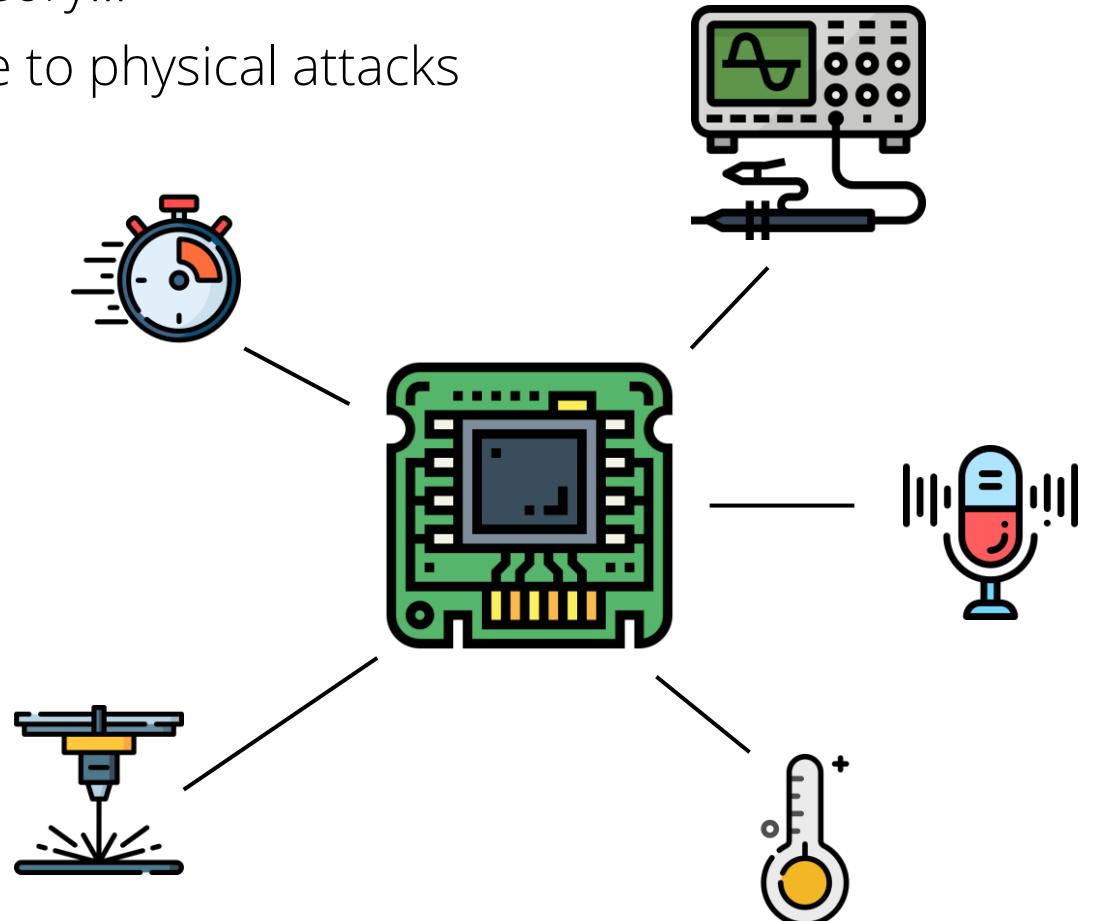
BEFORE WE START

- This presentation focuses on SCA
- And symmetric crypto
- Actually, permutation-based crypto

Who is familiar with permutation-based crypto?

PHYSICAL ATTACKS

- Cryptographic algorithms can be secure in theory...
- ...but their implementations can be vulnerable to physical attacks
- Adversaries can extract secrets using:
 - Power consumption
 - EM emissions
 - Timing differences
 - Fault injections



COUNTERMEASURES

- Side-channel and fault countermeasures often require:
 - Duplicated computations
 - Redundant logic
 - Extra randomness
- This results in
 - Higher execution time
 - Bigger code size
 - More silicon area
- Protected implementations may still leak if not correctly crafted!

DESIGN-LEVEL RESISTANCE

Goal

Reduce complexity
of
secure implementations

How

By considering
physical attacks
during design

Benefit

Easier to protect securely
Less room for errors
Lower implementation cost

ROADMAP OF TODAY

- Bottom-up with examples for each level of the design hierarchy
 - Inherently masking friendly components
 - Order of operations in the permutation
 - Modes that can either reduce the attack surface or prevent them
- Examples from real-world ciphers
- Open questions

Mode

Permutation

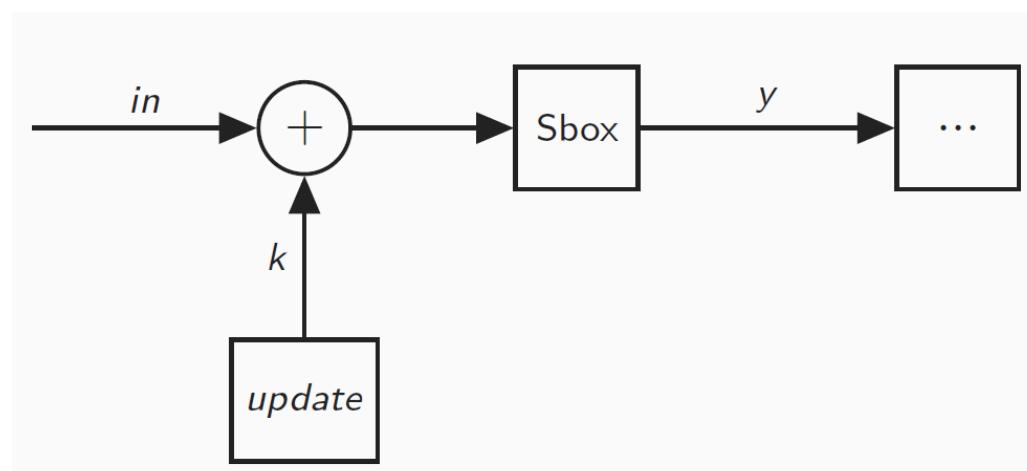
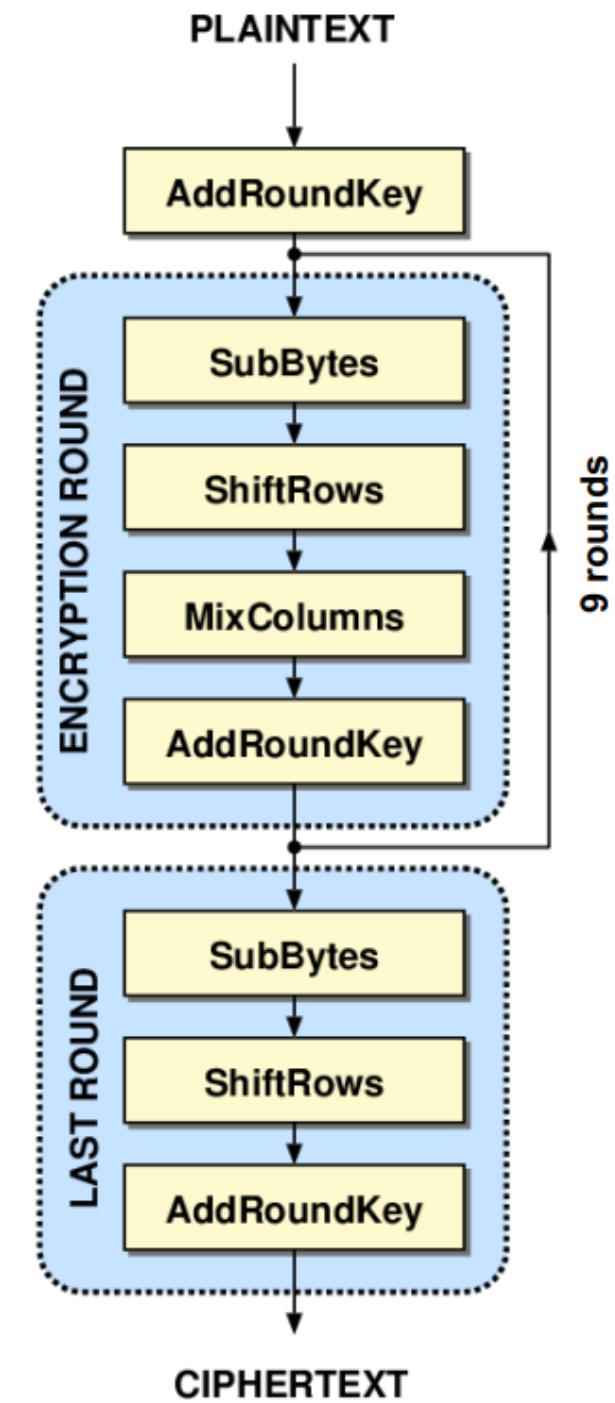
Components

DPA - MAIN CONCEPTS

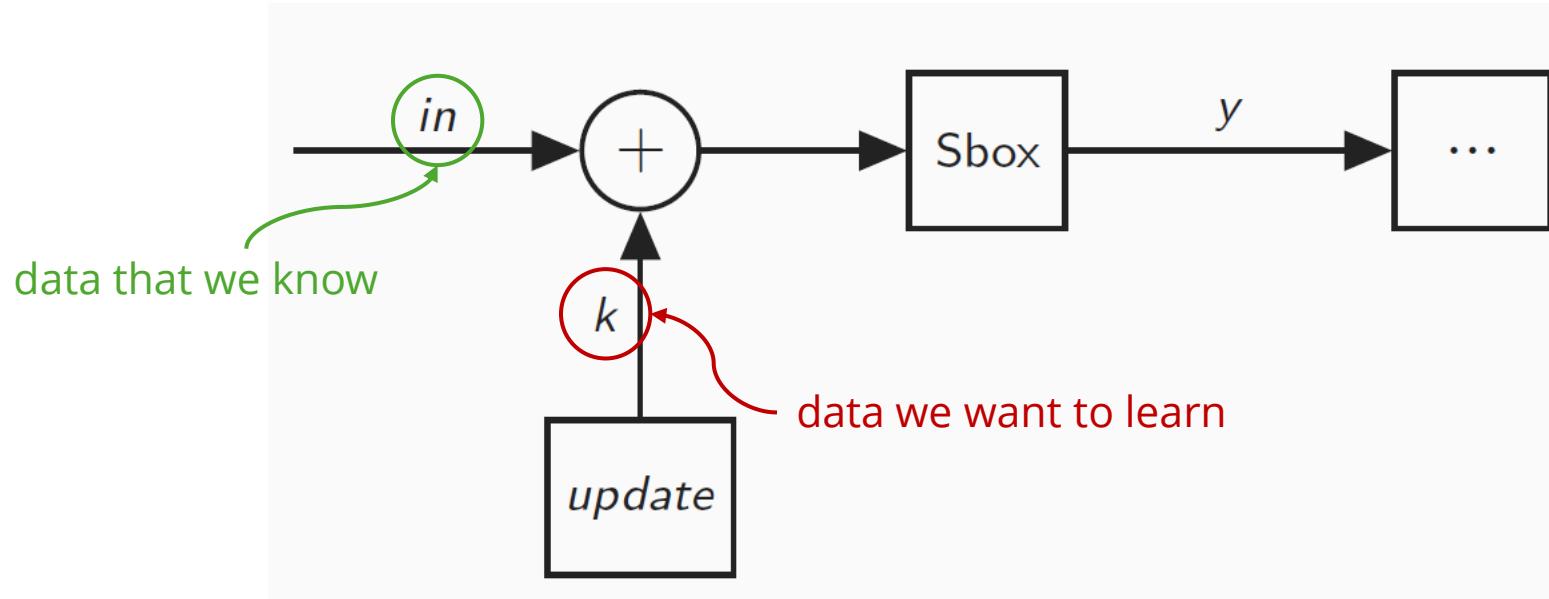
- Differential Power Analysis (DPA) is potentially feasible when there exists a **sensitive variable** that depends non-linearly on
 - **something we want to learn** (usually the key), which is fixed across multiple executions
 - **something we know** (usually the message), which changes across multiple executions
- Main steps:
 1. Choose your sensitive variable (for which exhaustive key search is possible)
 2. Collect measurements, known plaintext/ciphertext
 3. Predict (hypothetical) intermediate values by making sub-key guesses
 4. Decide on the leakage model
 5. Recover the key by statistical or other means using a side-channel distinguisher

DPA ON AES

- The sensitive variable must be fairly small to make exhaustive key-search possible
- A common choice is one S-box output, i.e., $y = \text{S-box}(\text{in} \oplus k)$
- Examples of leakage model are single-bit model, Hamming weight, and Hamming distance
- Examples of distinguisher are difference of means (DPA) and Pearson correlation (CPA)

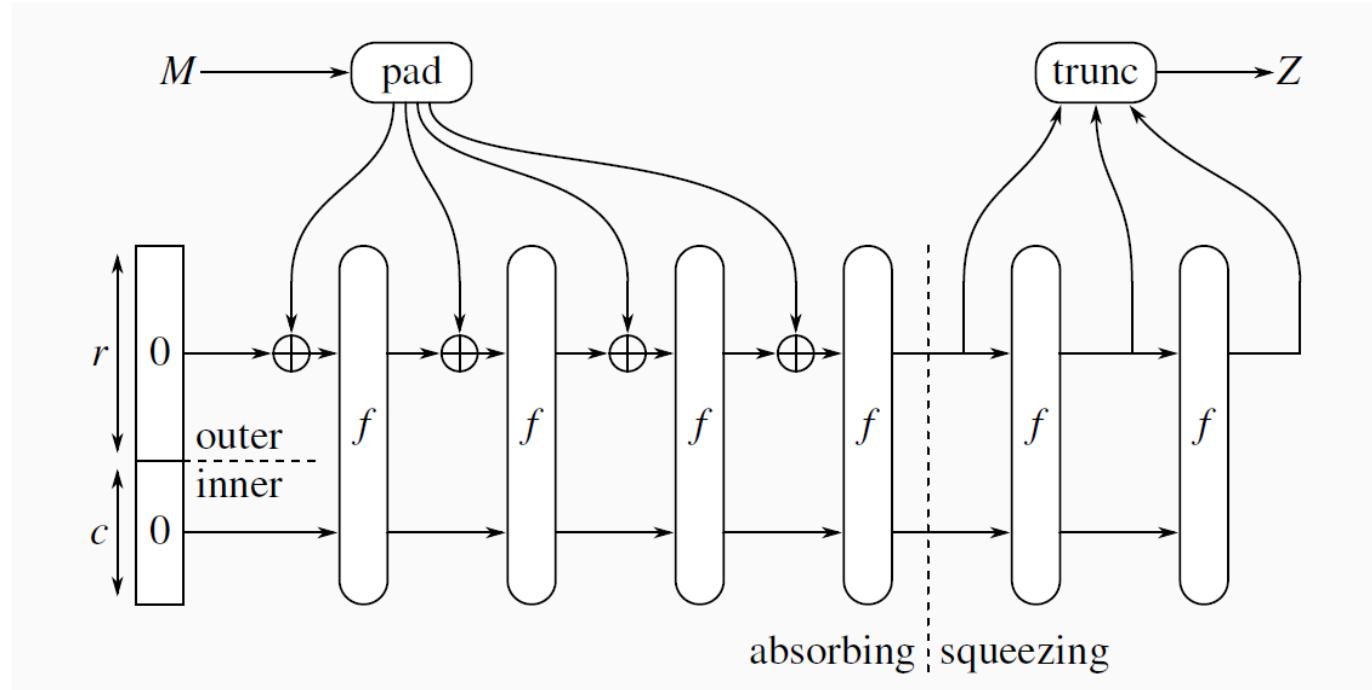


GENERALIZATION



- in can be any data that we know
- k is not always the secret key, but it can be something derived from it or in general any data we want to learn

THE SPONGE CONSTRUCTION*

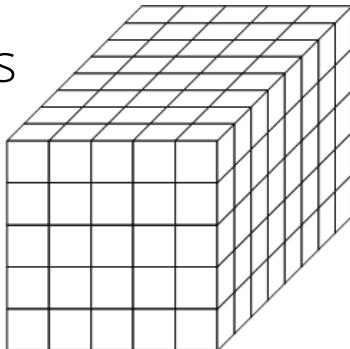


- Used in KECCAK (SHA-3), standardized by NIST in 2015
- Arbitrary-length input and output, r -bit rate, $b = r + c$, b -bit permutation, c -capacity
- Keyed mode: part of the input is secret key
- Security relies on secrecy of inner state

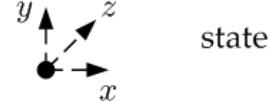
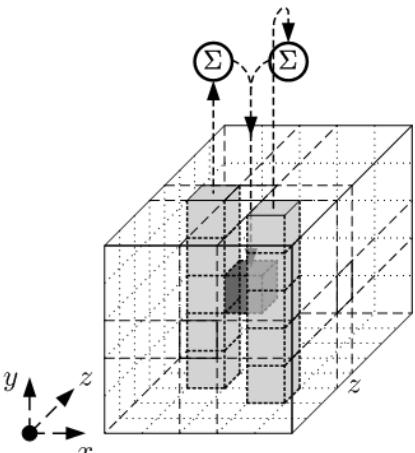
* G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. On the Indifferentiability of the Sponge Construction. EUROCRYPT 2008.

KECCAK-*f* [b]

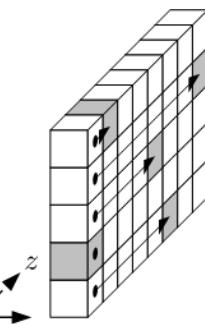
- Operates on 3D state of b bits
 - (5×5) -bit slices
 - 2^l -bit lanes
 - $0 \leq l < 7$



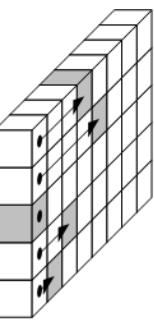
state



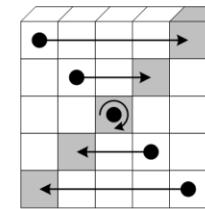
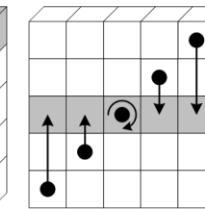
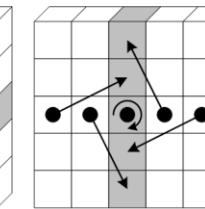
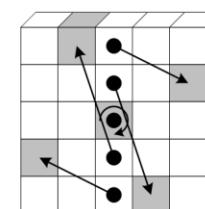
θ



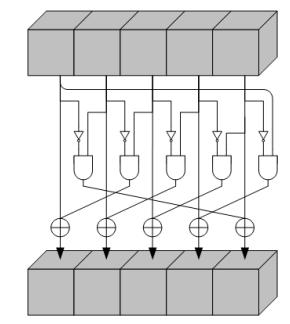
ρ



- Round function R with 5 steps:
 - θ : mixing layer (on columns)
 - ρ : bit transposition (intra lanes)
 - π : bit transposition (inter lanes)
 - χ : non-linear layer (on rows)
 - ι : round constants (on lane (0,0))
- Number of rounds: $12 + 2 \cdot l$ for $b = 2^l \cdot 25$
 - 12 rounds in KECCAK-*f*[25]
 - 24 rounds in KECCAK-*f*[1600]



π



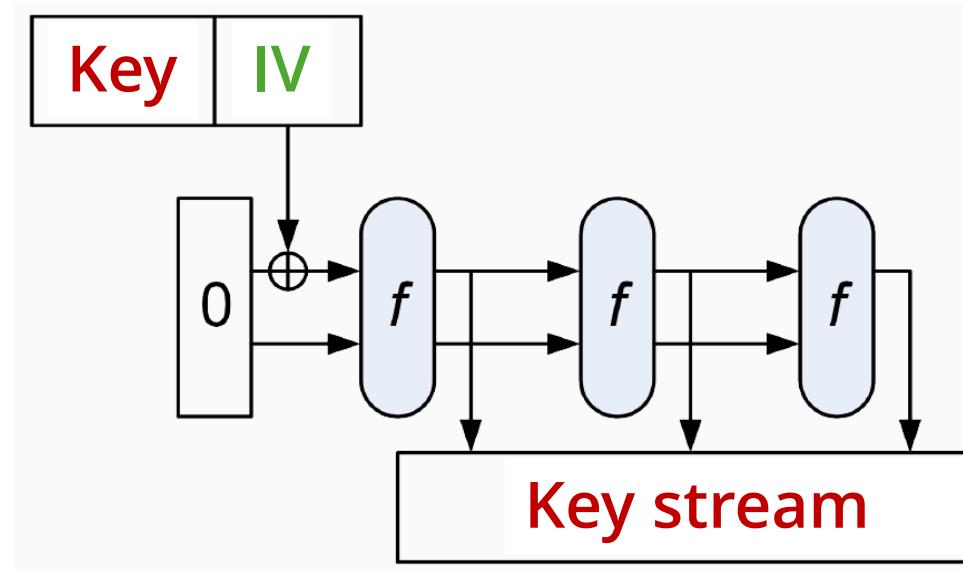
χ_5

USING SPONGE FOR MAC



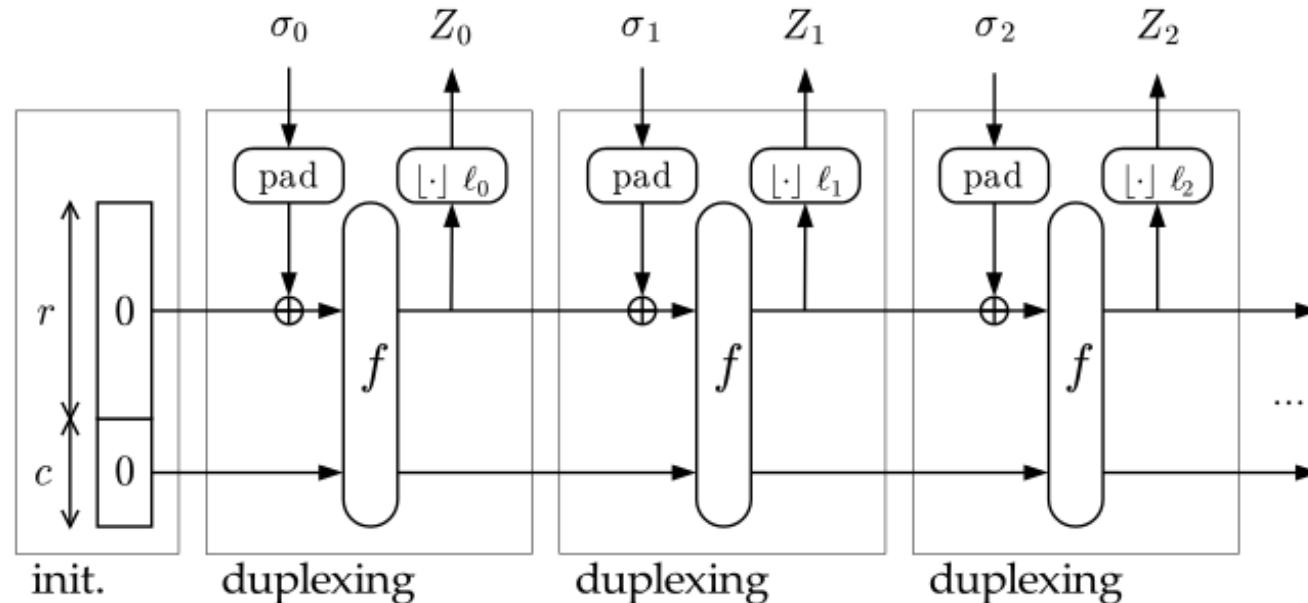
How can we attack it with DPA?

USING SPONGE FOR KEY STREAM



How can we attack it with DPA?

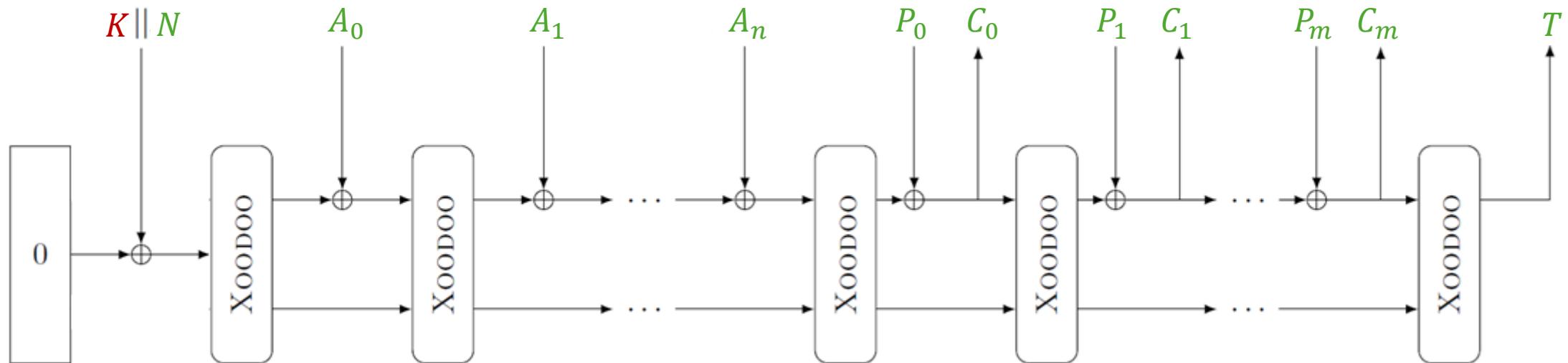
THE DUPLEX CONSTRUCTION*



- Allows the alternation of input and output blocks at the same rate as the sponge construction
 - Input blocks are padded, and output blocks can be truncated
 - Security equivalent to that of the sponge construction
 - Keyed mode: part of the input is secret key

* G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. On the Indifferentiability of the Sponge Construction. EUROCRYPT 2008.

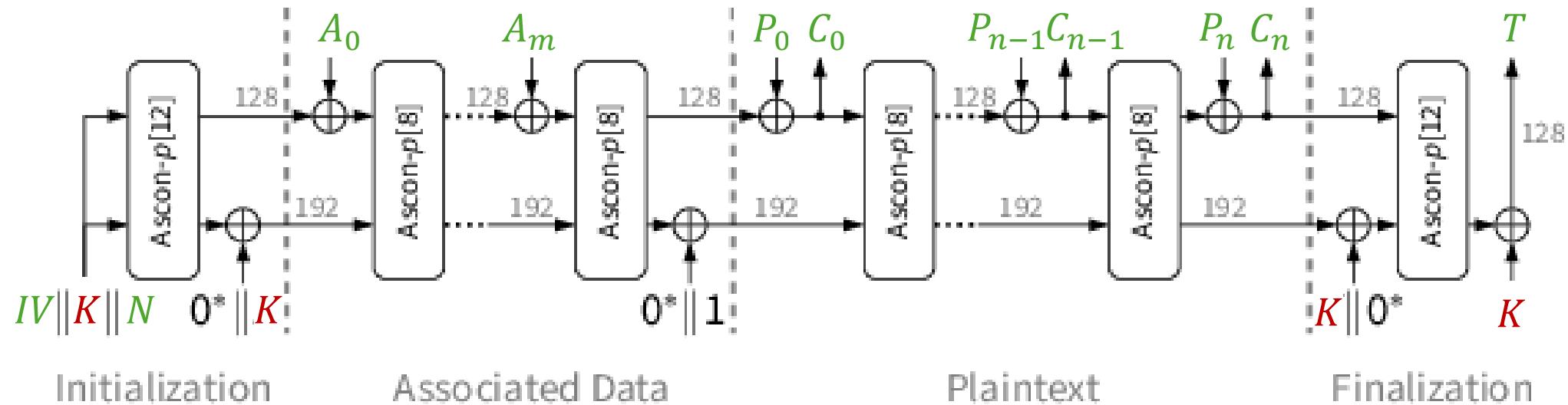
USING DUPLEX FOR AUTHENTICATED ENCRYPTION: XOOODYAK*



How can we attack it with DPA?

* Joan Daemen, Seth Hoffert, Silvia Mella, Michaël Peeters, Gilles Van Assche, Ronny Van Keer. Xoodyak, a final update. Publication to NIST Lightweight Cryptography Standardization Process (round 3), 2022.

USING DUPLEX FOR AUTHENTICATED ENCRYPTION: ASCON*



How can we attack it with DPA?

SCA COUNTERMEASURES

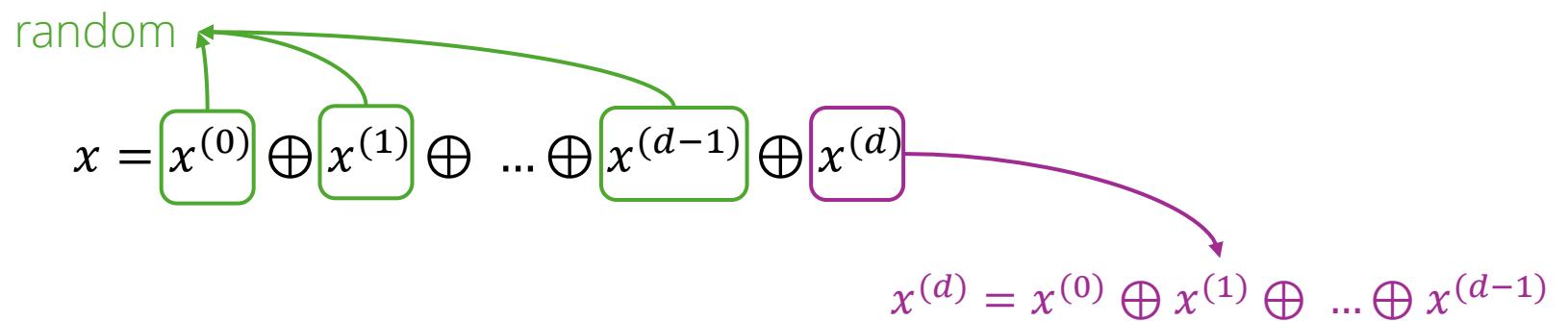
- Countermeasures can be applied on different levels
 - **Transistor-level**: logical gates and circuits are built in such a way that the information leakage is reduced
 - **Program-level**: dummy instructions, randomized order, etc. to make the alignment of traces more difficult
 - **Algorithmic level**: operations are computed in a way that reduces information leakage
 - **Protocol level**: limits the number of computations an attacker can perform with a given key
- **No 100 % security**
- **Robustness**: combine countermeasures at different levels
- **Cost**: area, energy and power consumption increase, loss of speed, . . .

MASKING

- Implemented at algorithmic level
- **Purpose:** breaking the link between sensitive variables and power consumption
- **Principle:** randomizing intermediate values with a secret sharing scheme
 - Random masks hide the native intermediate values
 - The power consumption depends on the randomized values on which the computation is performed (and not the native values)
- Each sensitive variable is split into multiple shares
- When the splitting operation is an Exclusive OR (XOR), we refer to it as a **Boolean masking**
- Many Boolean masking schemes have been proposed over the years: ISW, TI, CMS, DOM, etc.

BOOLEAN MASKING — BASIC PRINCIPLES

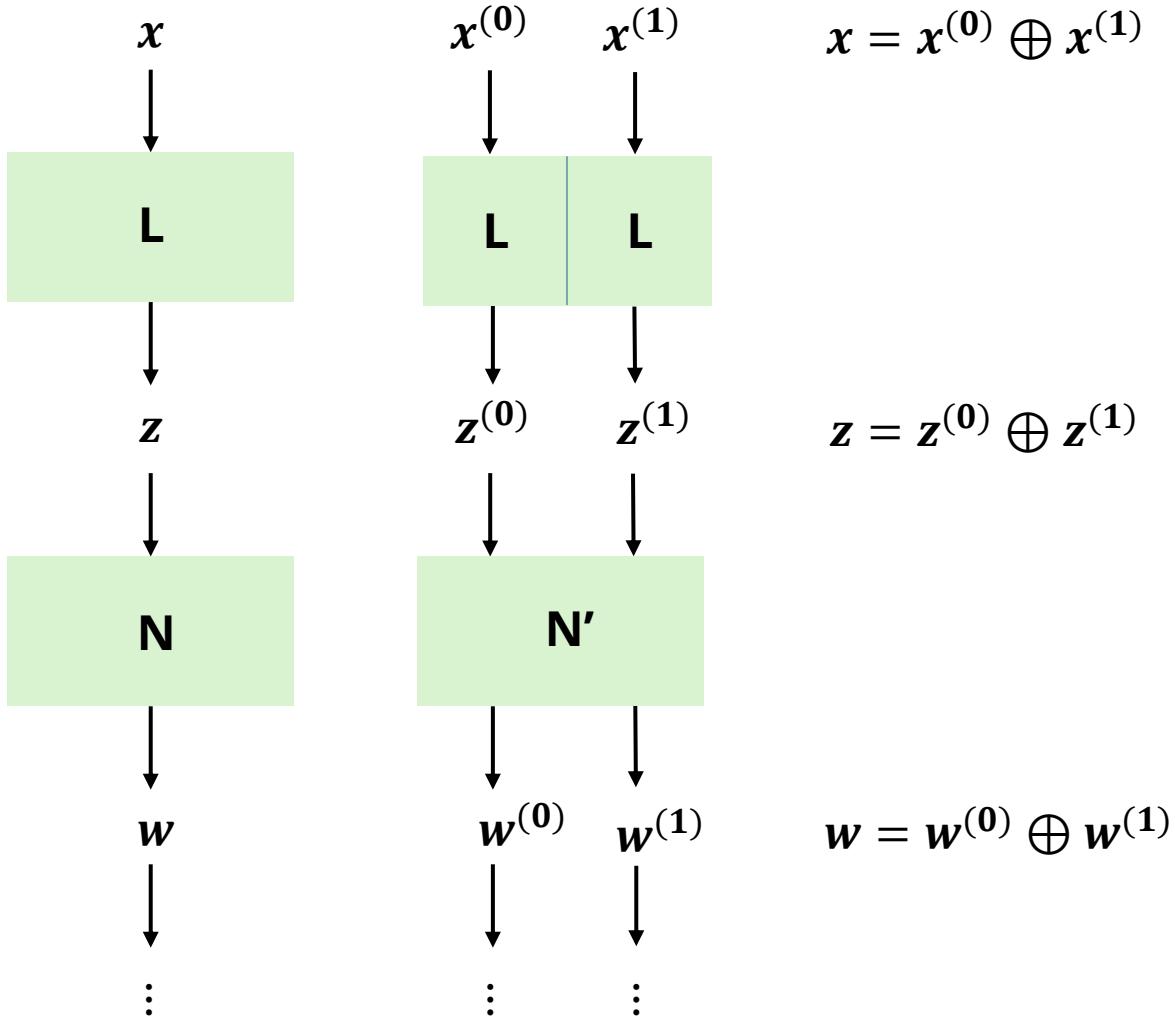
- A d th-order (Boolean) masking scheme splits an internal sensitive value x into $d + 1$ shares



- Only the combination of all shares reveals x
- Any set of at most d shares should not leak information about x
- The number of traces required for a successful attack grows exponentially w.r.t. the security order d

BOOLEAN MASKING WITH 2 SHARES

$$x = (x_0, x_1, \dots, x_{n-1}) \in \mathbb{F}_2^n$$



From linear algebra: linear maps preserve operations
 $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v}), \quad f(c\mathbf{u}) = cf(\mathbf{u})$

$$\downarrow$$

$$L(x) = L(x^{(0)} \oplus x^{(1)}) = L(x^{(0)}) \oplus L(x^{(1)})$$

$$\downarrow$$

$$\begin{aligned} z_0 &= L(x^{(0)}) \\ z_1 &= L(x^{(1)}) \end{aligned}$$

$$N(x) = N(x^{(0)} \oplus x^{(1)}) \neq N(x^{(0)}) + N(x^{(1)})$$

$$\downarrow$$

$$\begin{aligned} w_0 &= N'_0(x^{(0)}, x^{(1)}) \\ w_1 &= N'_1(x^{(0)}, x^{(1)}) \end{aligned}$$

EXAMPLE: AND GATE WITH 2 SHARES

- Inputs: $a = a^{(0)} \oplus a^{(1)}$, $b = b^{(0)} \oplus b^{(1)}$
- Goal: Compute $z = a \cdot b$ in a masked way
- Naïve masked AND (not secure):

$$\begin{aligned} z &= (a^{(0)} \oplus a^{(1)}) \cdot (b^{(0)} \oplus b^{(1)}) \\ &= a^{(0)} \cdot b^{(0)} \oplus a^{(0)} \cdot b^{(1)} \oplus a^{(1)} \cdot b^{(0)} \oplus a^{(1)} \cdot b^{(1)} \end{aligned}$$

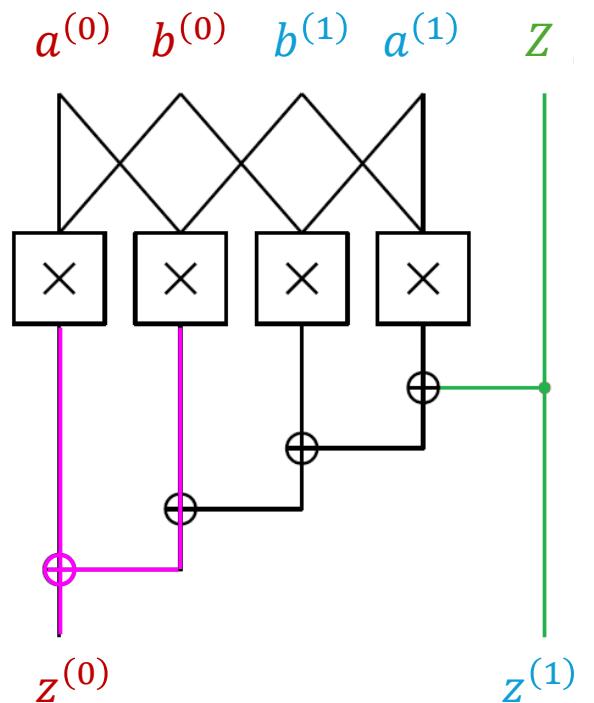
- 1 AND operation is replaced by 4 AND operations and 3 XOR operations

AND WITH CLASSICAL MASKING

$$z = a^{(0)} \cdot b^{(0)} \oplus a^{(0)} \cdot b^{(1)} \oplus a^{(1)} \cdot b^{(0)} \oplus a^{(1)} \cdot b^{(1)}$$

- It is fundamental to keep computed variables independent from native variables
- All partial products are independent of a and b
- The resulting sum is not
- A fresh random share Z needs to be added to break the dependency between the intermediates
- If the **intermediate result signal** reach the XOR gate before Z then $z^{(0)}$ is not independent to the value of b

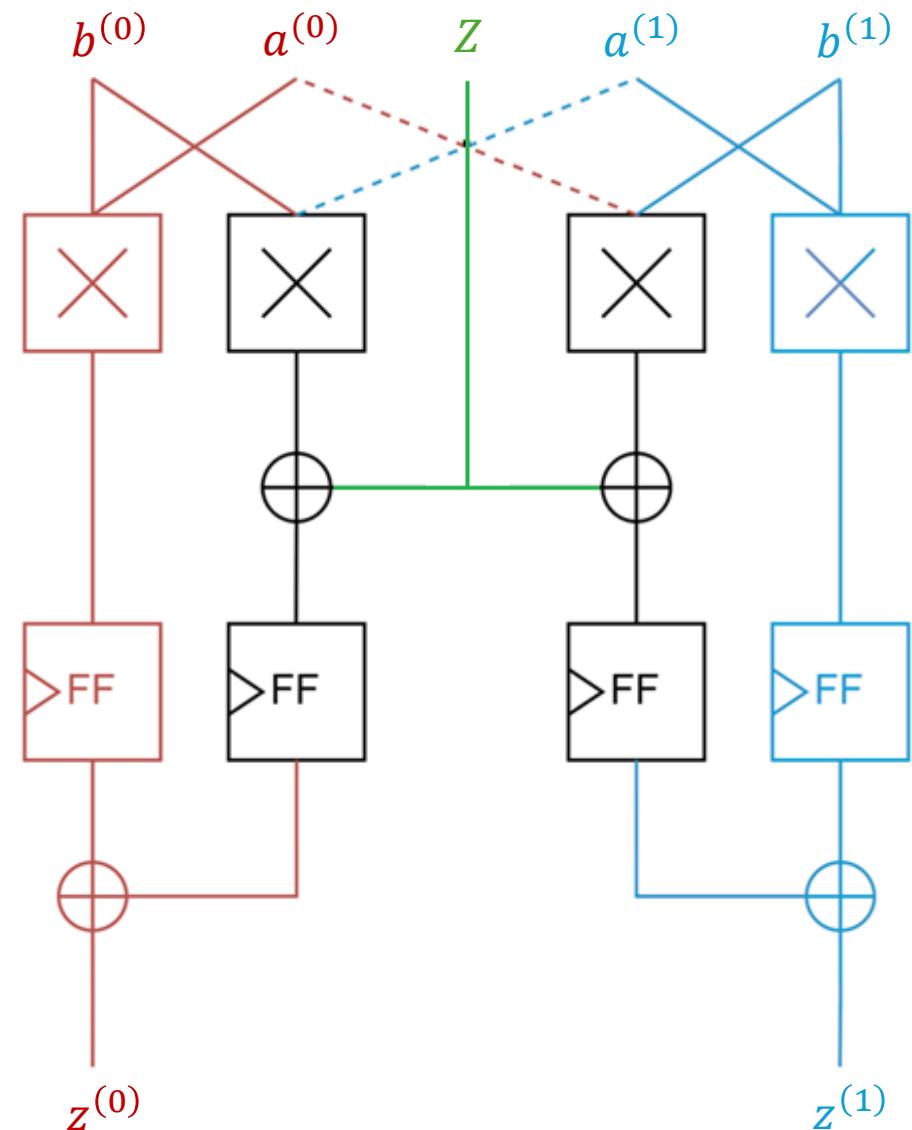
$$a^{(0)} \cdot b^{(0)} \oplus a^{(0)} \cdot b^{(1)} = a^{(0)} \cdot (b^{(0)} \oplus b^{(1)}) = a^{(0)} \cdot b$$



AND WITH DOMAIN ORIENTED MASKING (DOM)

- Unintended interactions between shares can cause 1st order leakage
- It is fundamental to keep computed variables independent from native variables
- DOM idea:
 - keep the shares of all domains independent from shares of other domains
 - secure domain crossings by adding a fresh random share Z and by using a register in order to prevent that glitches propagate from one domain to the other

$$\begin{aligned} z^{(0)} &= a^{(0)} \cdot b^{(0)} \oplus a^{(1)} \cdot b^{(0)} \oplus Z \\ z^{(1)} &= a^{(1)} \cdot b^{(1)} \oplus a^{(0)} \cdot b^{(1)} \oplus Z \end{aligned}$$



EXAMPLE: AND GATE WITH 3 SHARES

- Inputs: $a = a^{(0)} \oplus a^{(1)} \oplus a^{(2)}$, $b = b^{(0)} \oplus b^{(1)} \oplus b^{(2)}$
- Goal: Compute $z = a \cdot b$ in a masked way
- Naïve masked AND (not secure):

$$\begin{aligned} z &= (a^{(0)} \oplus a^{(1)} \oplus a^{(2)}) \cdot (b^{(0)} \oplus b^{(1)} \oplus b^{(2)}) \\ &= a^{(0)} \cdot b^{(0)} \oplus a^{(0)} \cdot b^{(1)} \oplus a^{(0)} \cdot b^{(2)} \oplus a^{(1)} \cdot b^{(0)} \oplus a^{(1)} \cdot b^{(1)} \oplus a^{(1)} \cdot b^{(2)} \\ &\quad \oplus a^{(2)} \cdot b^{(0)} \oplus a^{(2)} \cdot b^{(1)} \oplus a^{(2)} \cdot b^{(2)} \end{aligned}$$

- 1 AND operation is replaced by 9 AND operations and 8 XOR operations

EXAMPLE: MONOMIAL OF DEGREE 3 WITH 2 SHARES

- Inputs: $a = a^{(0)} \oplus a^{(1)}$, $b = b^{(0)} \oplus b^{(1)}$, $c = c^{(0)} \oplus c^{(1)}$
- Goal: Compute $z = a \cdot b \cdot c$ in a masked way
- Naïve masked AND (not secure):

$$\begin{aligned} z &= (a^{(0)} \oplus a^{(1)}) \cdot (b^{(0)} \oplus b^{(1)}) \cdot (c^{(0)} \oplus c^{(1)}) \\ &= (a^{(0)} \cdot b^{(0)} \oplus a^{(0)} \cdot b^{(1)} \oplus a^{(1)} \cdot b^{(0)} \oplus a^{(1)} \cdot b^{(1)}) \cdot (c^{(0)} \oplus c^{(1)}) \\ &= a^{(0)} \cdot b^{(0)} \cdot c^{(0)} \oplus a^{(0)} \cdot b^{(1)} \cdot c^{(0)} \oplus a^{(1)} \cdot b^{(0)} \cdot c^{(0)} \oplus a^{(1)} \cdot b^{(1)} \cdot c^{(0)} \\ &\quad \oplus a^{(0)} \cdot b^{(0)} \cdot c^{(1)} \oplus a^{(0)} \cdot b^{(1)} \cdot c^{(1)} \oplus a^{(1)} \cdot b^{(0)} \cdot c^{(1)} \oplus a^{(1)} \cdot b^{(1)} \cdot c^{(1)} \end{aligned}$$

- 1 AND operation is replaced by 16 AND operations and 7 XOR operations

GENERALIZING

- Linear operations can simply be duplicated and performed on each share independently, i.e. a **linear increase** in the area/time
- Non-linear parts grow **exponentially**
- To protect against d th-order DPA, the minimal number of shares is $d + 1$
- The number of expansion monomials of a multiplication is then $(d + 1)^2$
- A monomial of degree t expands to $(d + 1)^t$ monomials

Designing algorithms with simpler nonlinear operations can ease masking

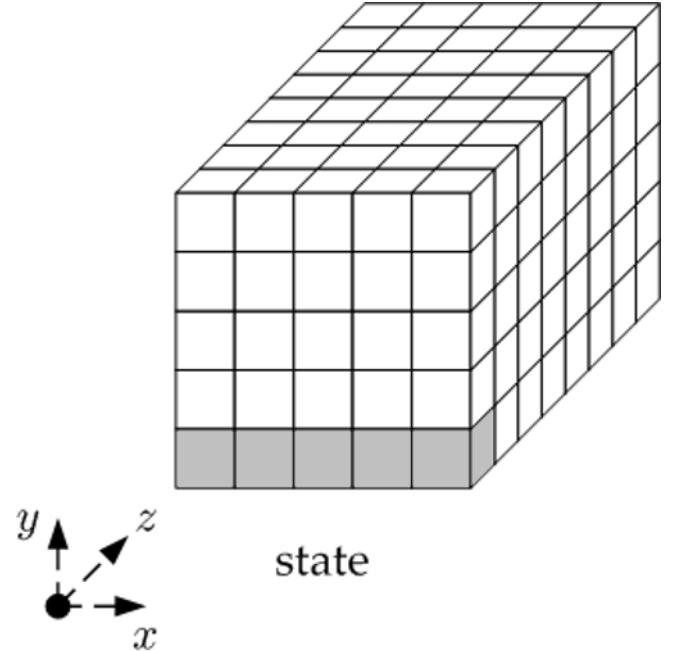
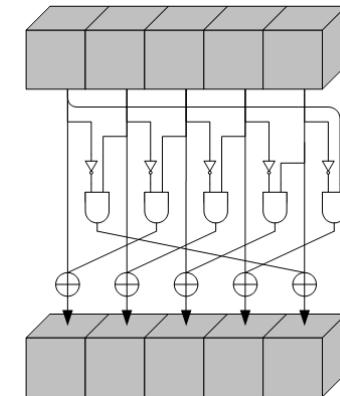
THE χ_n FUNCTION*

$$\chi_n: \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$$

$$x_i \leftarrow x_i \oplus \overline{x_{i+1}} \cdot x_{i+2}$$

- Example: KECCAK (SHA-3) uses χ_5

$$\begin{aligned}x_0 &\leftarrow x_0 \oplus \overline{x_1} \cdot x_2 \\x_1 &\leftarrow x_1 \oplus \overline{x_2} \cdot x_3 \\x_2 &\leftarrow x_2 \oplus \overline{x_3} \cdot x_4 \\x_3 &\leftarrow x_3 \oplus \overline{x_4} \cdot x_0 \\x_4 &\leftarrow x_4 \oplus \overline{x_0} \cdot x_1\end{aligned}$$

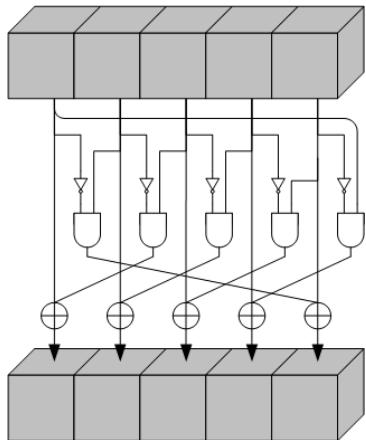


χ_n IS MASKING-FRIENDLY

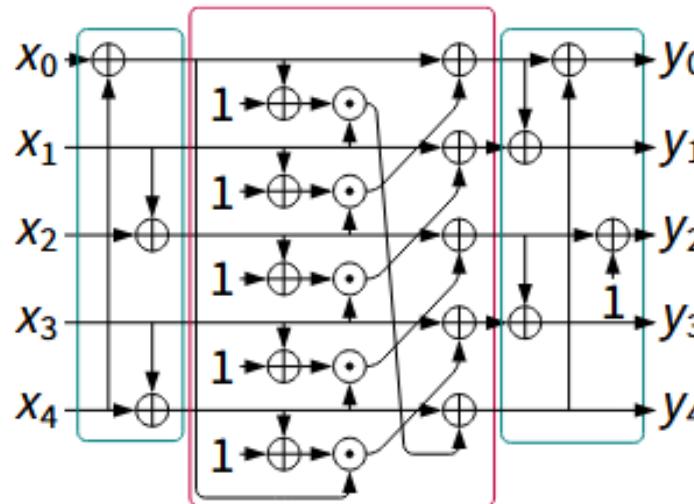
- Bitwise operation → naturally suited to masking
- Algebraic degree 2 → low number of expansion monomials
- Local regular structure → parallelizable
- Of course, good cryptographic properties and implementation advantages

χ_n is often used because it's naturally friendly to side-channel protections

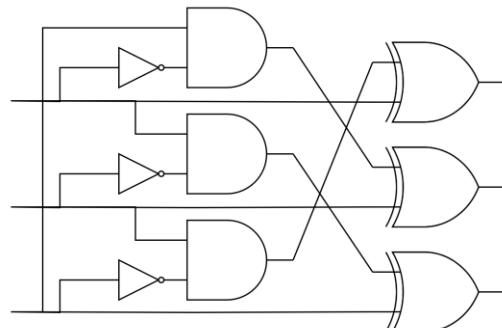
χ_n IN MANY LIGHTWEIGHT DESIGNS



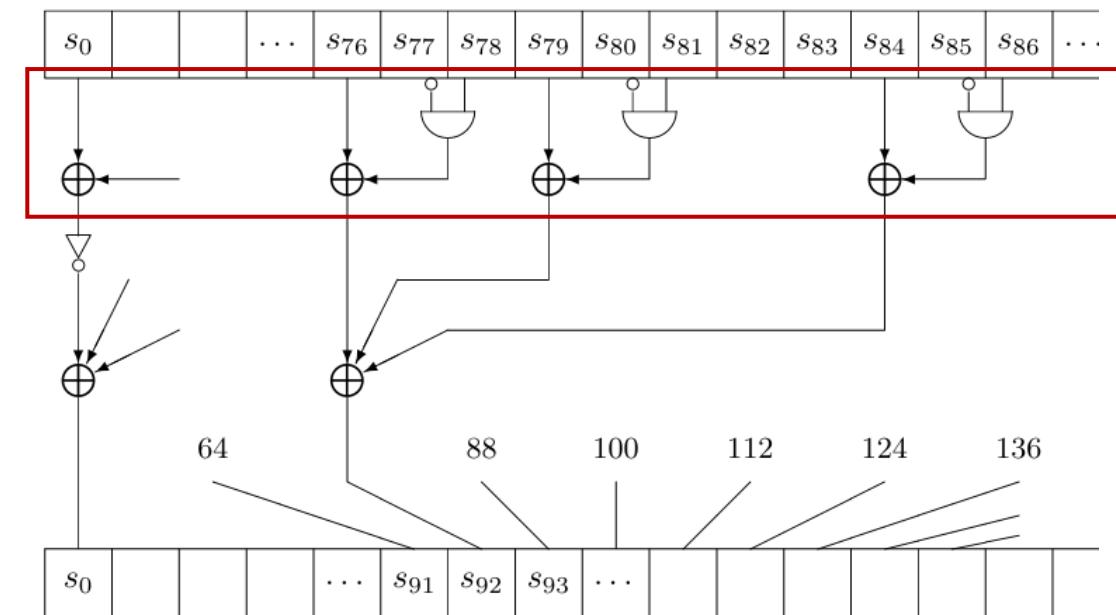
χ_5 in KECCAK



Ascon S-box based on χ_5



χ_3 in XOOODOO



χ_{257} in SUBTERRANEAN

MASKING χ_n

- $\chi : x_i \leftarrow x_i \oplus (x_{i+1} \oplus 1) \cdot x_{i+2}$ becomes:

$$\begin{aligned} z &= (x_i^{(0)} \oplus x_i^{(1)}) \oplus (x_{i+1}^{(0)} \oplus x_{i+1}^{(1)} \oplus 1) (x_{i+2}^{(0)} \oplus x_{i+2}^{(1)}) \\ &= x_i^{(0)} \oplus x_i^{(1)} \oplus x_{i+1}^{(0)} \cdot x_{i+2}^{(0)} \oplus x_{i+1}^{(0)} \cdot x_{i+2}^{(1)} \oplus x_{i+1}^{(1)} \cdot x_{i+2}^{(0)} \oplus x_{i+1}^{(1)} \cdot x_{i+2}^{(1)} \oplus x_{i+2}^{(0)} \oplus x_{i+2}^{(1)} \end{aligned}$$

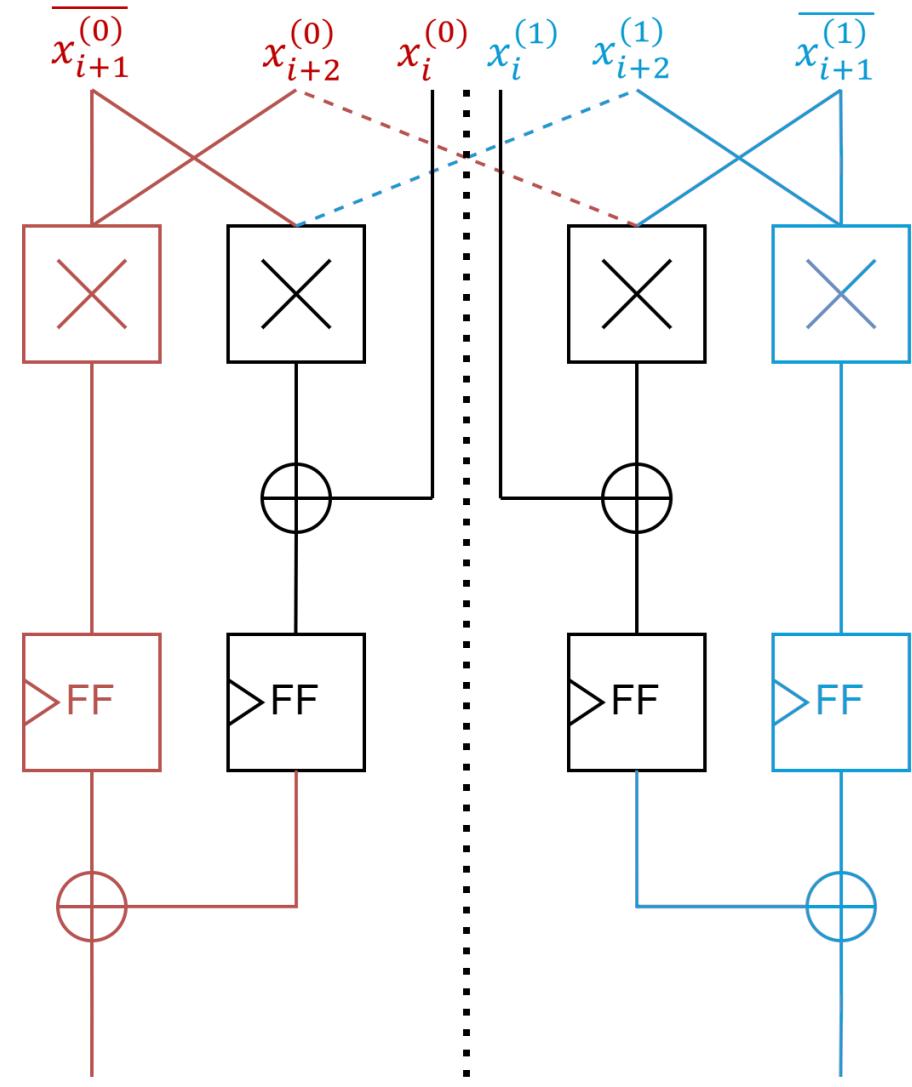
- We distribute the terms, e.g.:

$$\begin{aligned} x_i^{(0)} &= x_i^{(0)} \oplus (x_{i+1}^{(0)} \oplus 1) \cdot x_{i+2}^{(0)} \oplus x_{i+1}^{(0)} \cdot x_{i+2}^{(1)} \\ x_i^{(1)} &= x_i^{(1)} \oplus (x_{i+1}^{(1)} \oplus 1) \cdot x_{i+2}^{(1)} \oplus x_{i+1}^{(1)} \cdot x_{i+2}^{(0)} \end{aligned}$$

- Cost: 1 XOR, 1 AND and 1 NOT replaced by 4 XOR, 4 AND and 2 NOT

MASKING χ_n WITH DOM

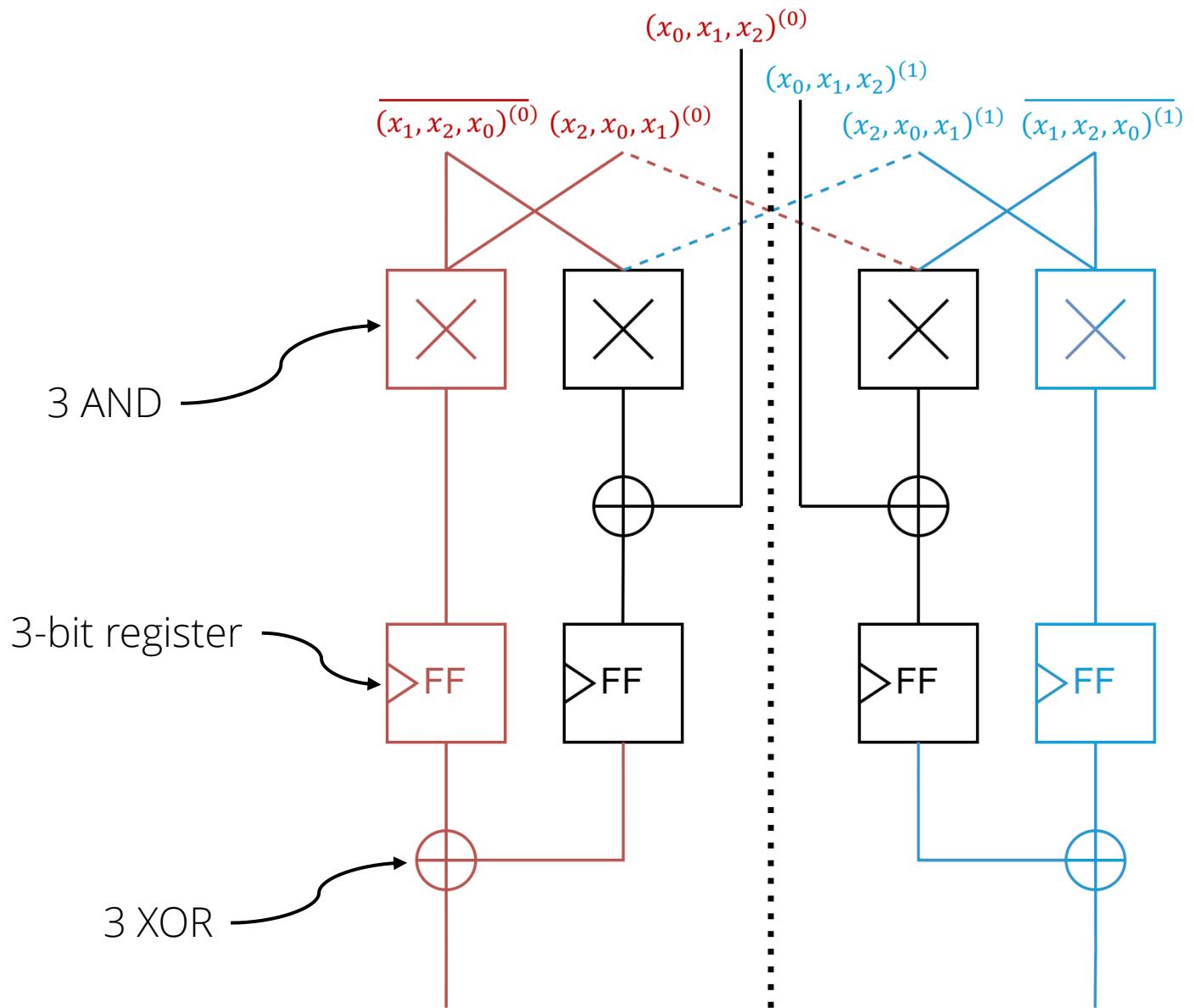
- $x_i \leftarrow x_i \oplus \overline{x_{i+1}} \cdot x_{i+2}$
- $x_i^{(0)}$ and $x_i^{(1)}$ play the role of fresh random Z



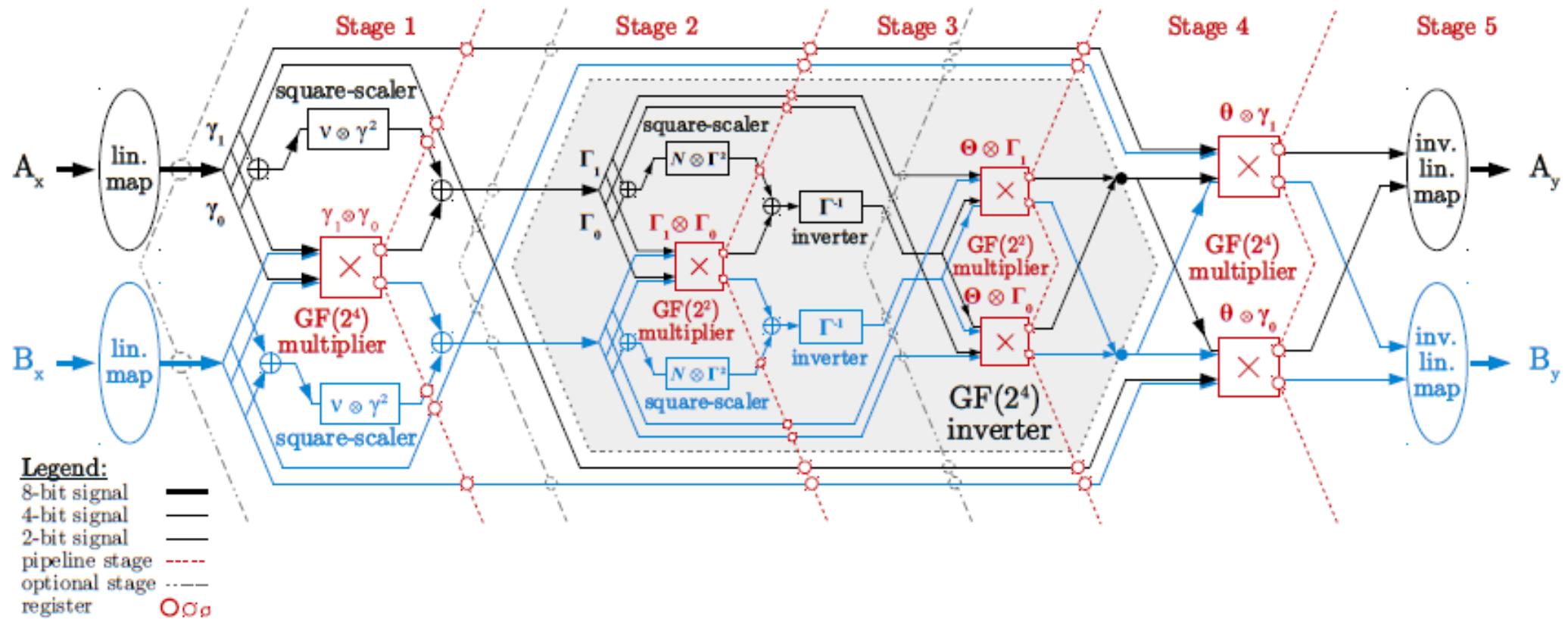
EXAMPLE: χ_3

$$\chi_3: \mathbb{F}_2^3 \rightarrow \mathbb{F}_2^3$$

$$\begin{aligned}x_0 &\leftarrow x_0 \oplus \overline{x_1} \cdot x_2 \\x_1 &\leftarrow x_1 \oplus \overline{x_2} \cdot x_0 \\x_2 &\leftarrow x_2 \oplus \overline{x_0} \cdot x_1\end{aligned}$$



AES S-BOX PROTECTED WITH DOM



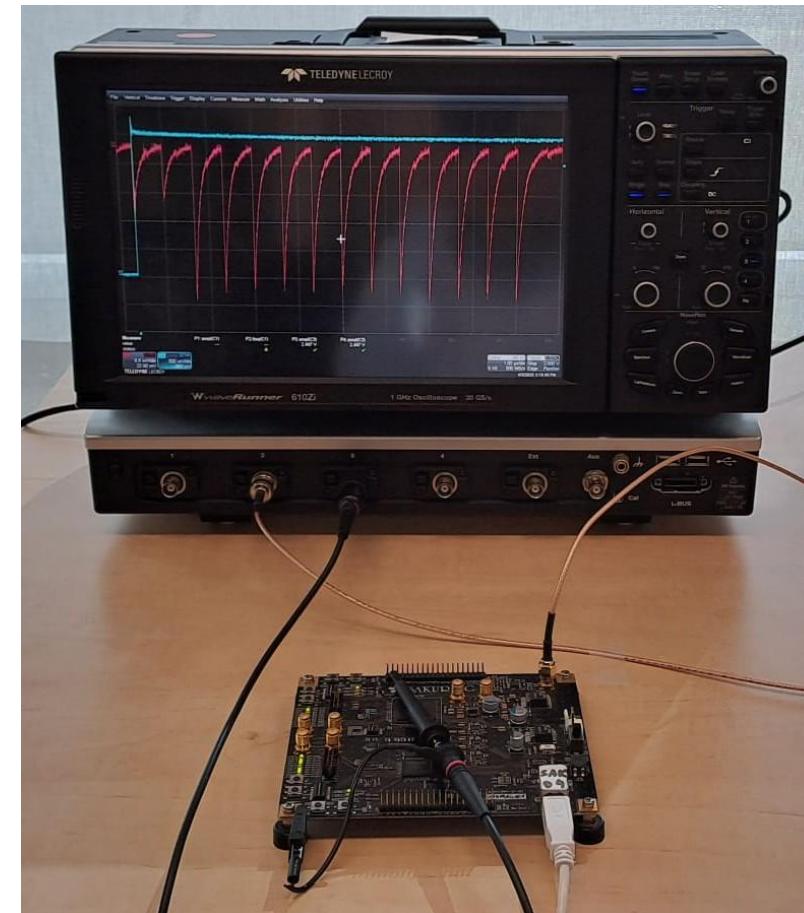
XOODOO PROTECTED WITH DOM

Protection order	Area (μm^2)	GE	Ratio
Unprotected	7572.22	9489	1.00
1st	25802.80	32334	3.41
2nd	49237.66	61700	6.50
3rd	79923.16	100154	10.55
4th	118729.36	148784	15.68

Table: ASIC synthesis figures for NanGate 45nm @100MHz

SCA SETUP

Sakura-G¹ evaluation board equipped with a Xilinx Spartan-6 FPGA,
and Lecroy WaveRunner 610Zi oscilloscope



¹ <https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html>

TVLA ON UNPROTECTED IMPLEMENTATION

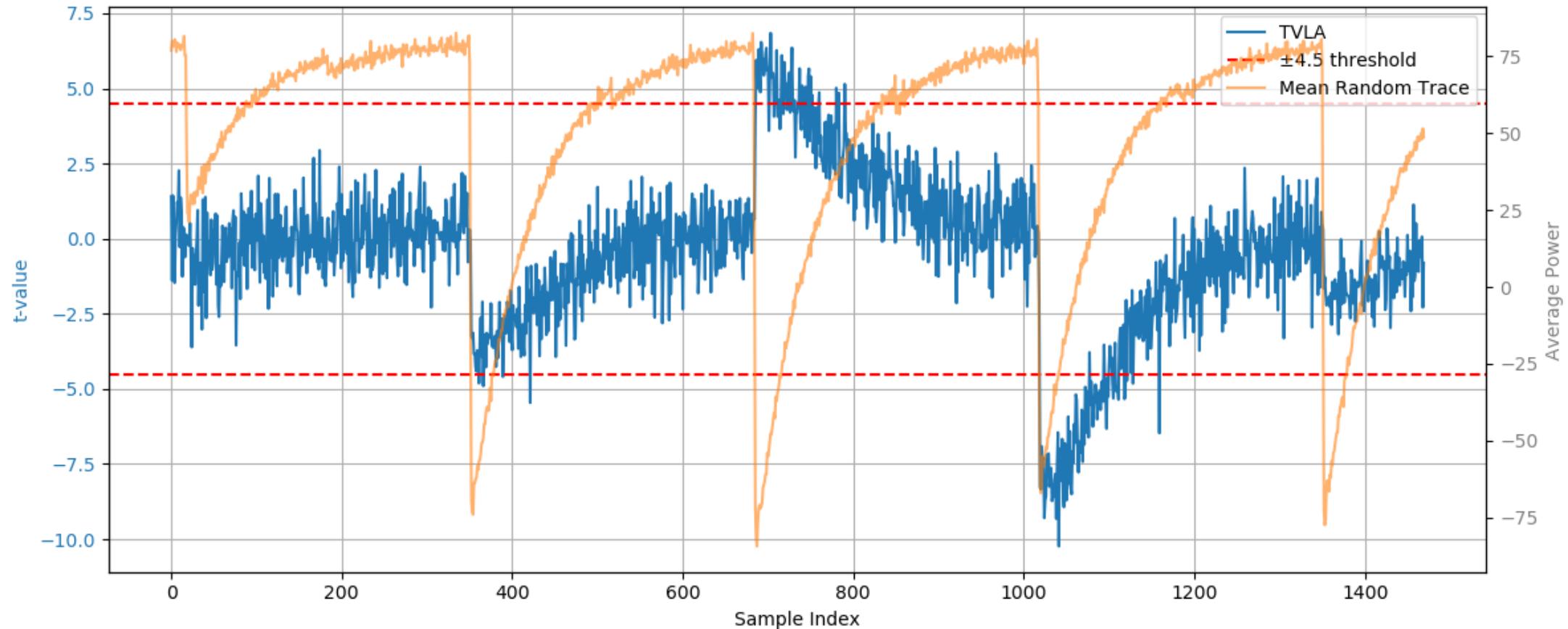


Figure: First-order TVLA on unprotected implementation using 50 power traces

TVLA ON PROTECTED IMPLEMENTATION – 1ST ORDER

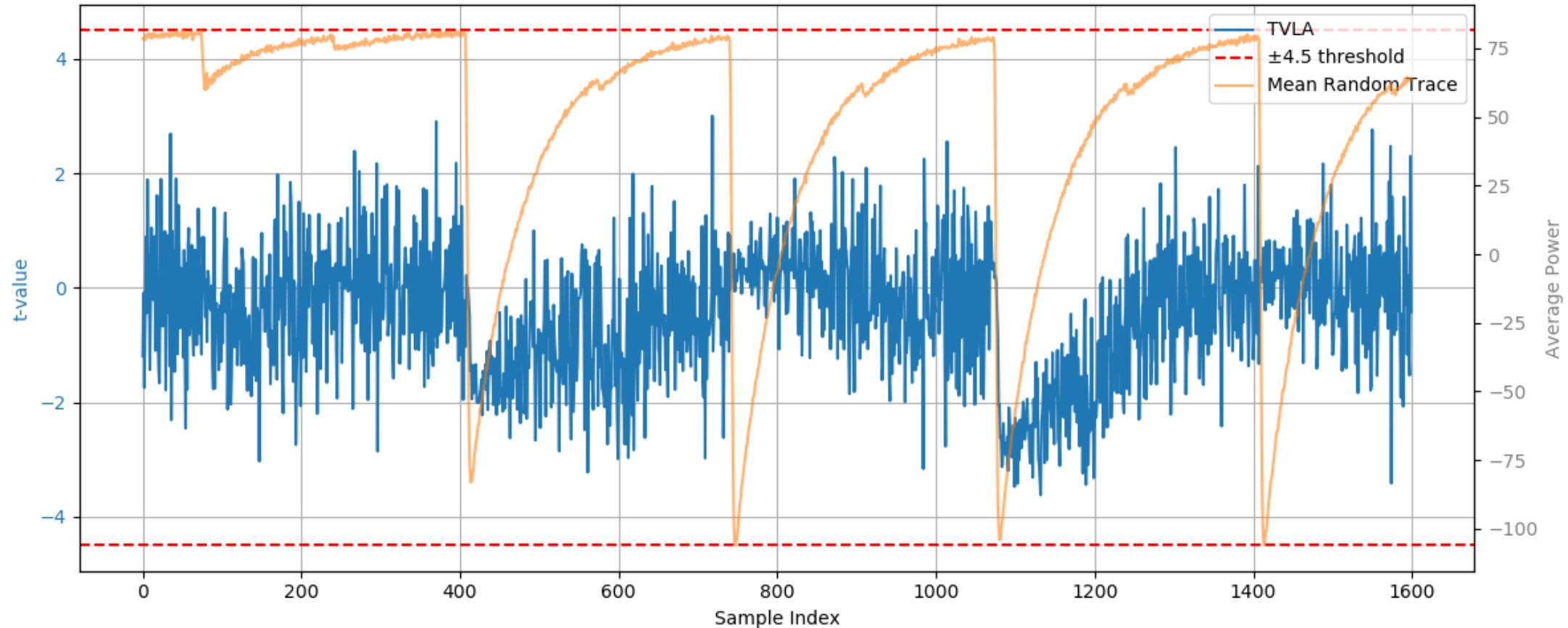


Figure: First-order TVLA on first-order protected implementation using 2.5 million power traces

TVLA ON PROTECTED IMPLEMENTATION – 2ND ORDER

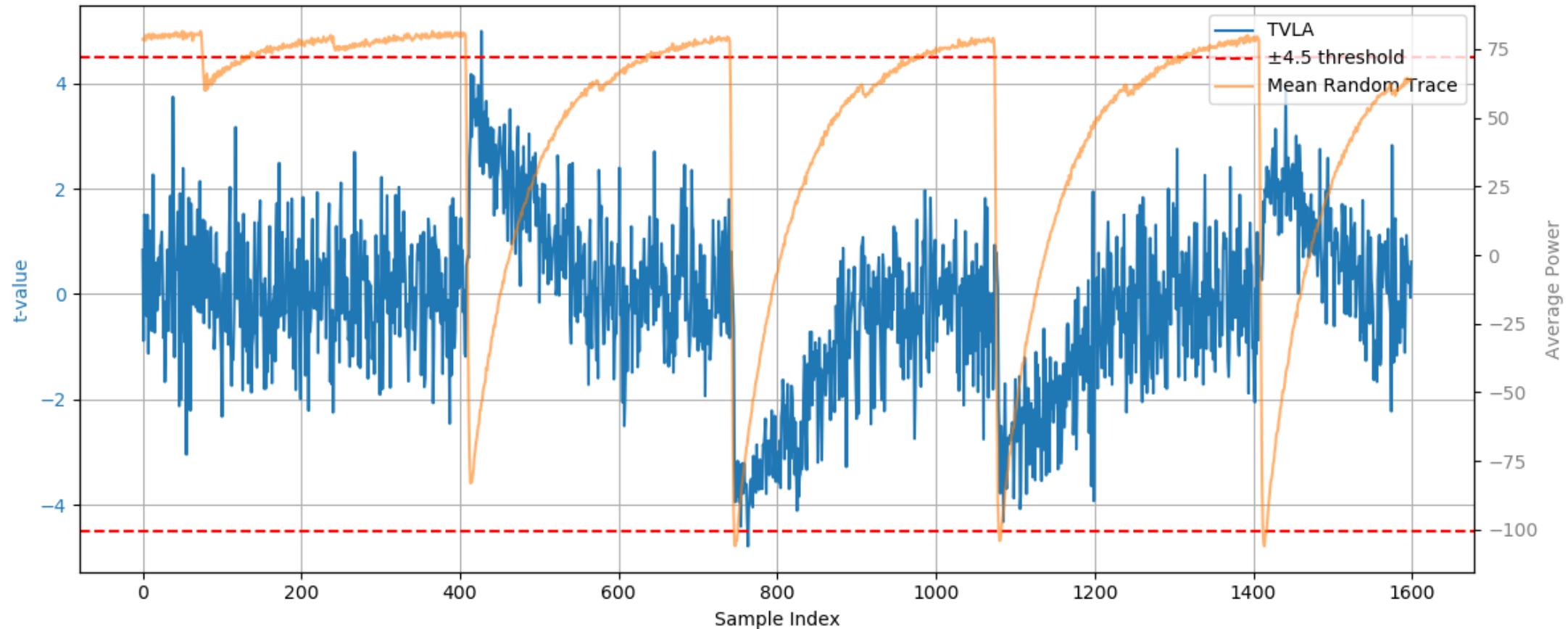
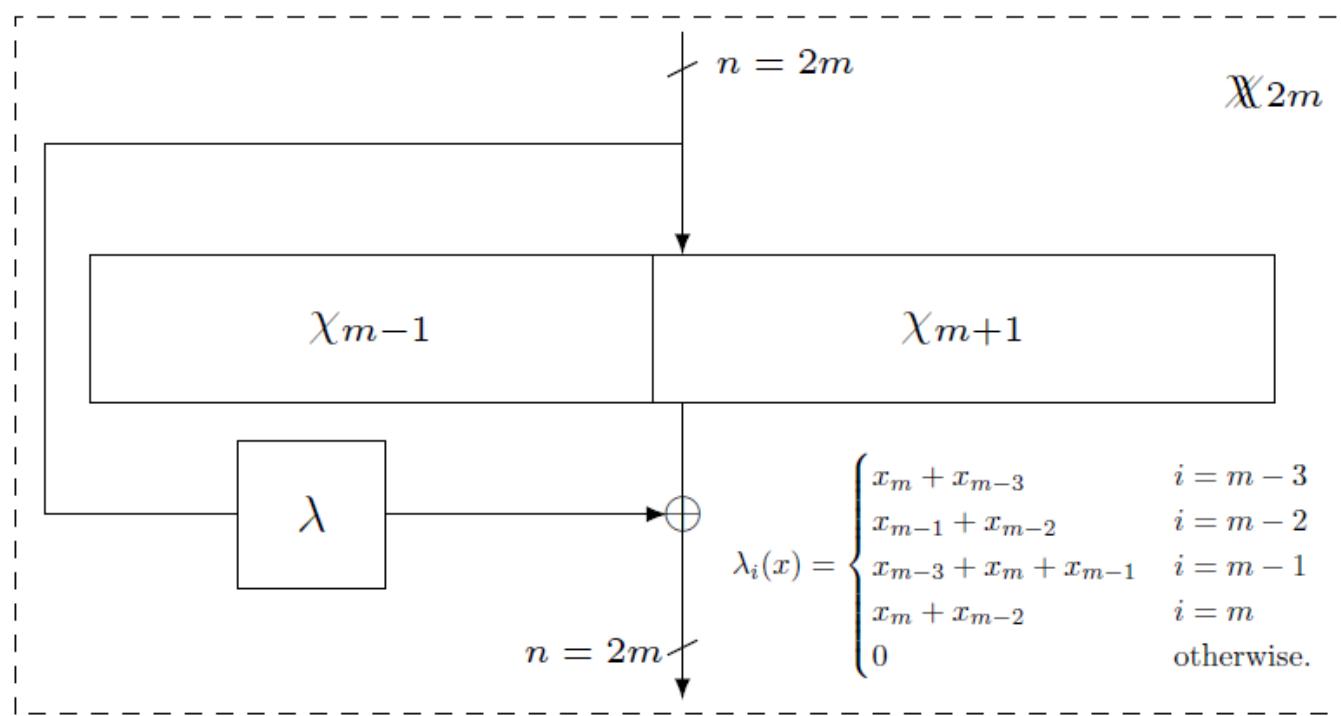


Figure: Second-order TVLA on first-order protected implementation using 2.5 million power traces

\mathbb{X} : A GENERALIZATION OF χ_n

- χ_n is a permutation if and only if n is odd
- What can we do when n is even?



Fact

\mathbb{X} is EAE to two parallel χ and inherits its properties

Theorem

For m even, \mathbb{X}_{2m} is a bijection

OPEN QUESTIONS

- Can we prove that \mathcal{X} is bijective for any m ?
- Can we generalize it while maintaining or improving the properties of \mathcal{X} ?

THE ORDER OF LAYERS

- Cryptographic permutations usually consist of
 - One non-linear layer (usually S-box layer)
 - Mixing layer
 - Rotations
 - Round constant addition
- In Xoodoo: $\rho_{east} \circ \chi \circ \iota \circ \rho_{west} \circ \theta$
 - mixing layer → rotation → const. add → non-linear layer → rotation
- In ASCON-p: $p_L \circ p_S \circ p_C$
 - const. add → non-linear layer → mixing layer

Does the order of operations have an impact on SCA ?

THE GASTON* AND GASTON-R PERMUTATIONS

- Same components but different order of layers
 - State like in Ascon- p
 - Mixing layer inspired by KECCAK
 - Non-linear layer is χ_5
- **GASTON** (original design): mixing layer before non-linear layer
- **GASTON-R** (modified by us): mixing layer after non-linear layer

Permutation	Area (μm^2)	GE	Ratio
Ascon- p	4956.38	6211	1.000
GASTON	5244.72	6572	1.058
GASTON-R	5028.73	6302	1.015

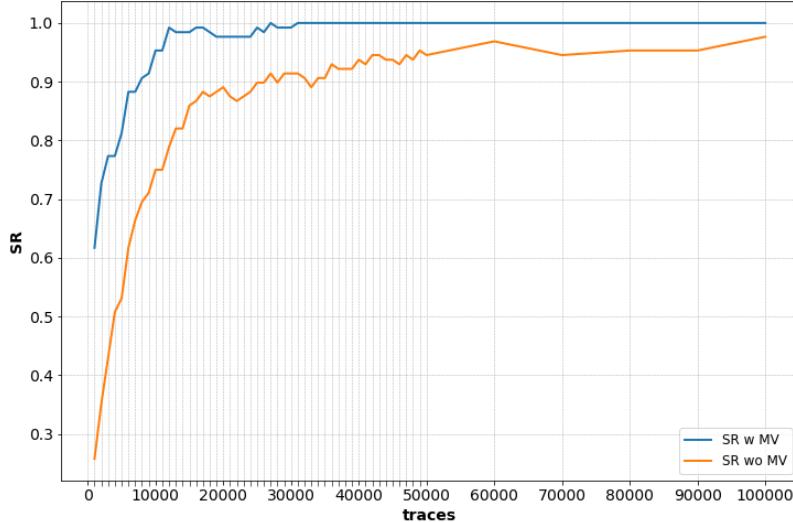
Table: ASIC synthesis figures for NanGate 45nm @1GHz

CPA RESULTS*

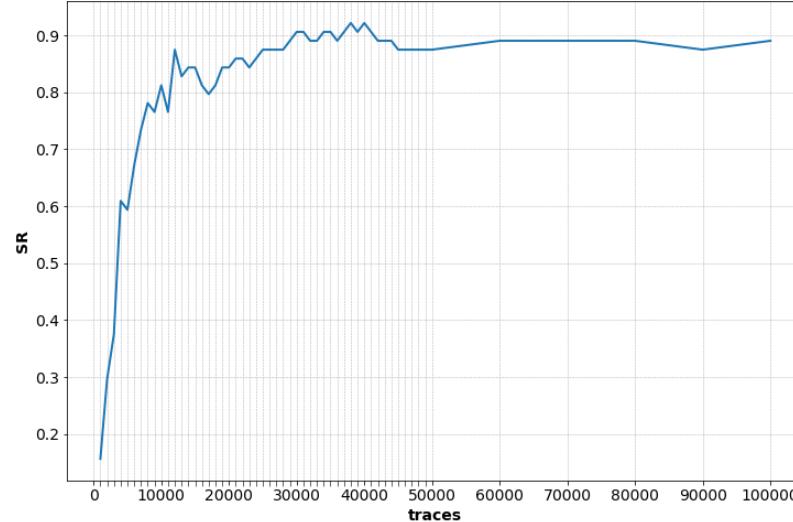
Permutation	Number of key bits recovered (tot. 128)
ASCON- p	100% with 31,000 traces
GASTON	< 90% with 100,000 traces
GASTON-R	50% with 18,000 traces [†]

[†] no non-linear term involving first half of the key and nonce

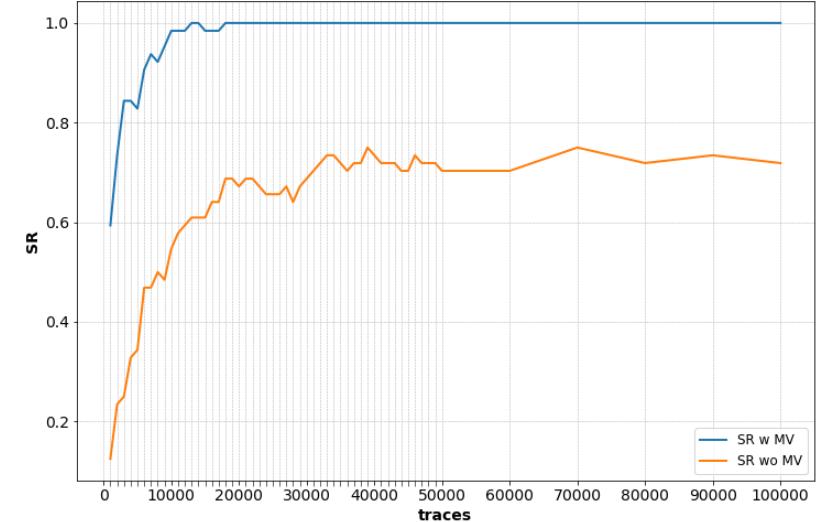
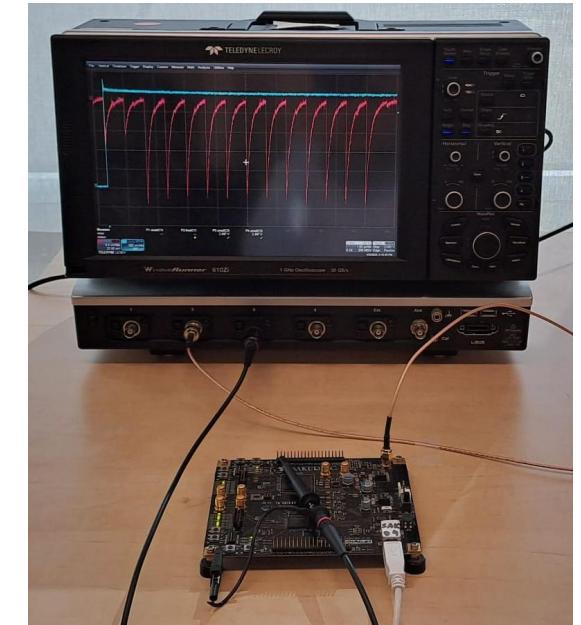
ASCON- p



GASTON



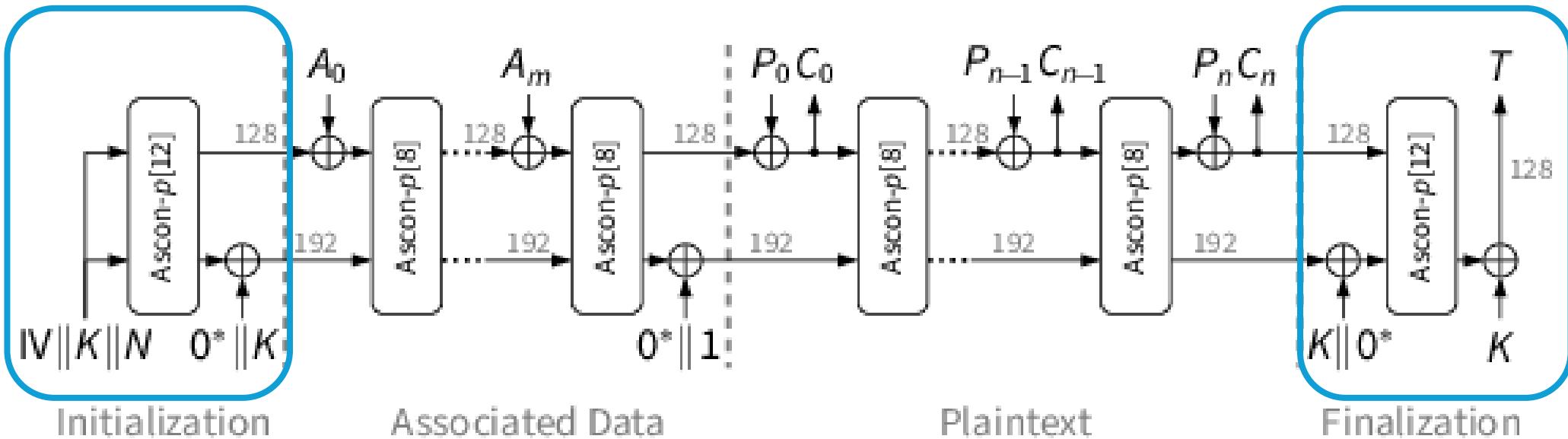
GASTON-R



OPEN QUESTIONS

- What is the impact on other permutations/block ciphers?
- What is the impact on other types of SCA (like TA, collision attacks, etc.)?
- Can the Success Rate on Gaston-R be improved by attacking 2nd round?

ASCON MODE



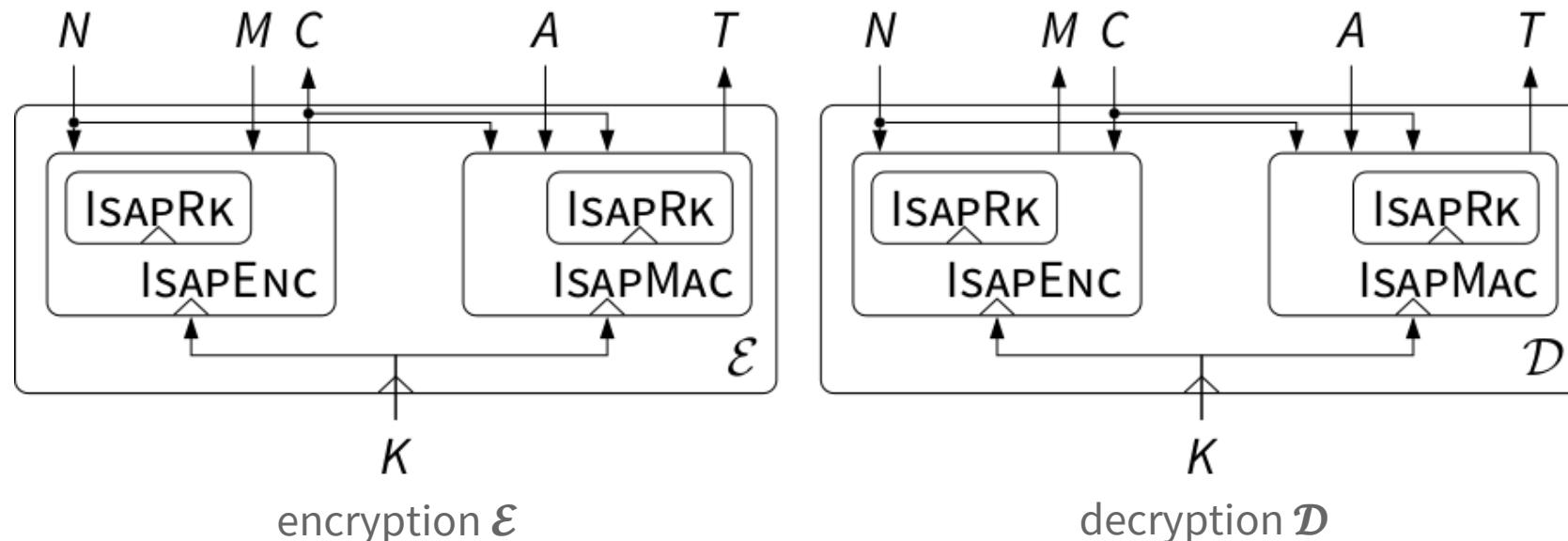
- Recovering the state during AD and P processing does not directly lead to key recovery or forgeries
- This allows more efficient protection against DPA with **leveled implementations**
 - The degree of algorithmic countermeasures can be reduced for certain parts of a cryptographic computation
 - Data can be processed at higher speed with a lower protection level

NECESSARY CONDITIONS FOR DPA/CPA

- We can collect measurements corresponding to multiple executions where
 - The secret data (usually the key) is fixed
 - The known data (usually the message) changes per execution
- If we can remove these conditions, then DPA/CPA are prevented
- Ideas:
 - Refresh the key at each execution → the target keeps moving
 - Limit the known data that can be exploited

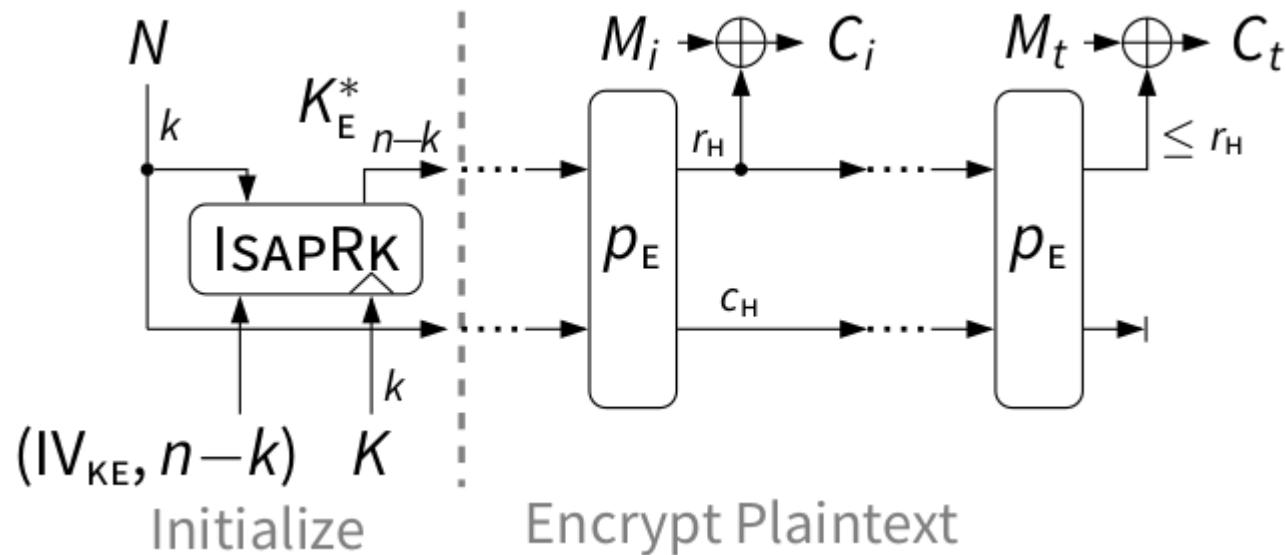
EXAMPLE : ISAP*

- Submission to the NIST lightweight competition
- Sponge-based mode of operation for authenticated encryption
- Can be instantiated with either Ascon-p or Keccak-p[400] as the underlying permutation
- Encrypt-then-MAC paradigm



* Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart Mennink, Robert Primas and Thomas Unterluggauer. ISAP v2.0 Submission to the NIST Lightweight Cryptography competition. <https://isap.isec.tugraz.at/publications.html>

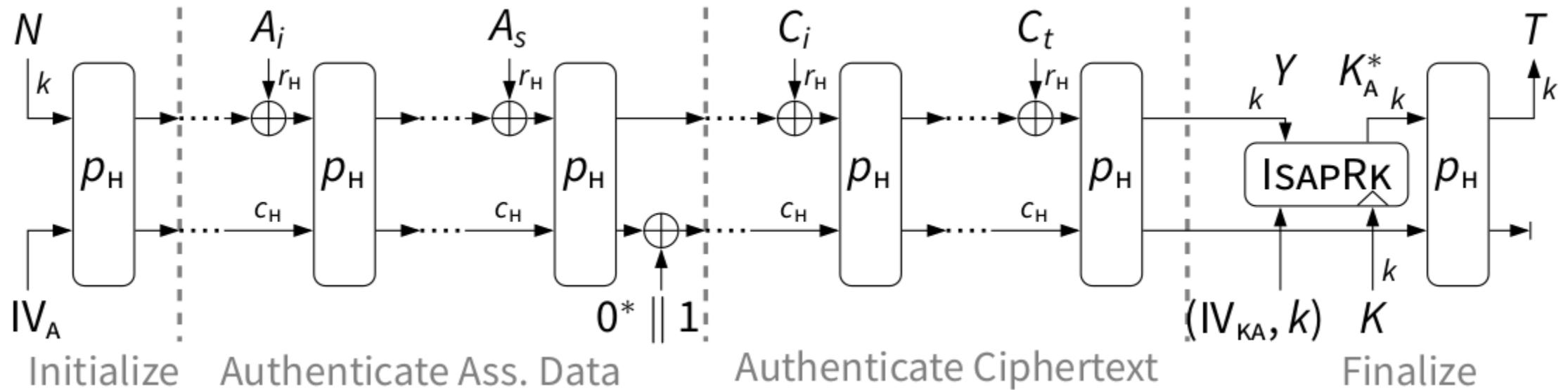
ISAPENC



We cannot collect multiple measurements with the same fixed key

- Stream encryption with keyed sponge
- Encryption Subkey K_E^* generated by IsAPRK and different for every N
- Decryption is identical with M and C swapped
 - An adversary could exploit multiple decryptions with the same nonce N
 - To prevent such a DPA scenario, verification is performed prior to decryption
 - If verification fails, decryption does not start

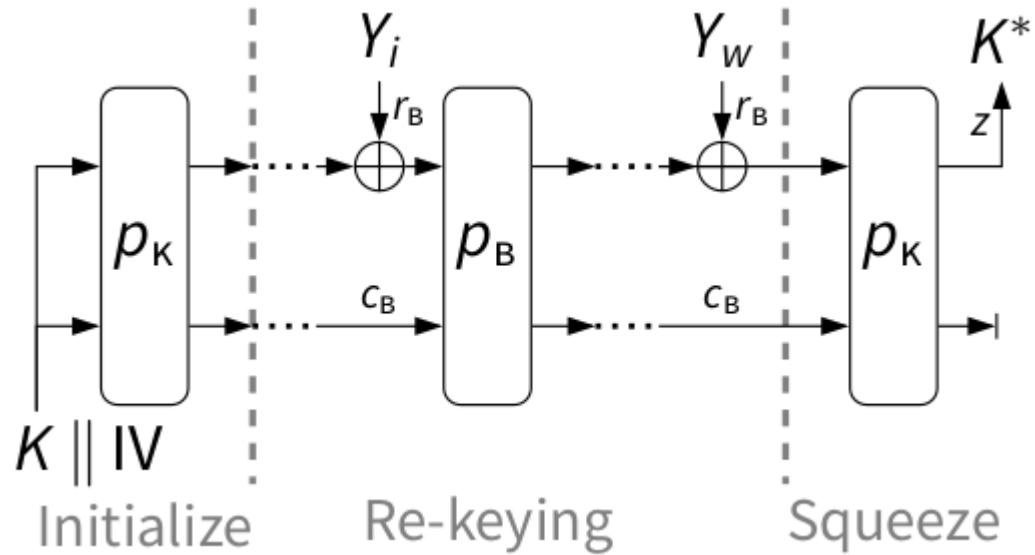
ISAPMAC



- Sponge-based hash function to build a suffix-MAC
- Subkey K_A^* generated by ISAPRK and different for every call
- For verification, the tag is re-computed in the same way and compared with the received tag T

We cannot collect multiple measurements with the same fixed key

ISAPRK



We cannot collect enough measurements with different known data

- DPA made infeasible by reducing the input data complexity exploitable
 - If $r_B = 1$, only two possible traces
- Sponge-based equivalent of GGM¹ mode for AES
- Tradeoff: rate highly restricted \leftrightarrow reduced number of rounds of p_B

¹ Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the ACM. doi: 10.1145/6490.6503

SUMMARY

- Side-channel and fault countermeasures often result in bigger area and higher execution time
- Protected implementations may still leak if not correctly crafted!
- Algorithm structure can simplify protections by
 - Using masking-friendly components
 - Combining operations such that the attack complexity increases
 - Using modes that can either reduce the attack surface or prevent them

Thank you for your attention!