
Silvia Mella
Institute for Computing and Information Sciences, Radboud University

June 5, 2025

Designing cryptographic algorithms with physical attack resistance in mind



WHO AM I?

• Assistant professor @Radboud University
• Design and analysis of cryptographic permutations

• Hardware implementations

• Side-channel attacks

• Post-doc @Radboud University
• Same stuff

• Cryptographer @STMicroelectronics, Italy
• Hardware accelerators for public-key crypto

• Design, verification, pre-silicon side-channel and fault attacks evaluations

• PhD in CS @University of Milano, Italy
• Crypto

• Bachelor and Master in Math @University of Milano, Italy



BEFORE WE START

• This presentation focuses on SCA

• And symmetric crypto

• Actually, permutation-based crypto

Who is familiar with permutation-based crypto?



PHYSICAL ATTACKS

• Cryptographic algorithms can be secure in theory…

• …but their implementations can be vulnerable to physical attacks

• Adversaries can extract secrets using:
• Power consumption 

• EM emissions 

• Timing differences

• Fault injections



COUNTERMEASURES

• Side-channel and fault countermeasures often require:
• Duplicated computations

• Redundant logic

• Extra randomness

• This results in
• Higher execution time

• Bigger code size

• More silicon area

• Protected implementations may still leak if not correctly crafted!



DESIGN-LEVEL RESISTANCE

Goal

Reduce complexity 
of 

secure implementations

How

By considering 
physical attacks 
during design

Benefit

Easier to protect securely
Less room for errors

Lower implementation cost



ROADMAP OF TODAY

• Bottom-up with examples for each level of 
the design hierarchy
• Inherently masking friendly components

• Order of operations in the permutation

• Modes that can either reduce the attack 
surface or prevent them

• Examples from real-world ciphers

• Open questions

Components

Permutation

Mode



DPA - MAIN CONCEPTS

• Differential Power Analysis (DPA) is potentially feasible when there exists a sensitive 
variable that depends non-linearly on 
• something we want to learn (usually the key), which is fixed across multiple executions

• something we know (usually the message), which changes across multiple executions

• Main steps:
1. Choose your sensitive variable (for which exhaustive key search is possible)

2. Collect measurements, known plaintext/ciphertext 

3. Predict (hypothetical) intermediate values by making sub-key guesses

4. Decide on the leakage model

5. Recover the key by statistical or other means using a side-channel distinguisher



DPA ON AES

• The sensitive variable must be fairly small to make 
exhaustive key-search possible

• A common choice is one S-box output, i.e., y = S-box(in ⊕ k)

• Examples of leakage model are single-bit model, Hamming 
weight, and Hamming distance

• Examples of distinguisher are difference of means (DPA) and 
Pearson correlation (CPA)



GENERALIZATION

• in can be any data that we know

• k is not always the secret key, but it can be something derived from it or in general any 
data we want to learn

data that we know

data we want to learn



THE SPONGE CONSTRUCTION*

* G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. On the Indifferentiability of the Sponge Construction. EUROCRYPT 2008.

• Used in KECCAK (SHA-3), standardized by NIST in 2015

• Arbitrary-length input and output, r-bit rate, b = r + c, b-bit permutation, c-capacity

• Keyed mode: part of the input is secret key

• Security relies on secrecy of inner state



KECCAK-f [b]

• Operates on 3D state of b bits
• (5 x 5)-bit slices

• 2𝑙-bit lanes

• 0 ≤ 𝑙 < 7

𝜃
𝜌

• Round function R with 5 steps:
• 𝜃 : mixing layer (on columns)

• 𝜌 : bit transposition (intra lanes)

• 𝜋 : bit transposition (inter lanes)

• 𝜒 : non-linear layer (on rows)

• 𝜄 : round constants (on lane (0,0))

• Number of rounds: 12 + 2 ⋅ 𝑙 for 𝑏 = 2𝑙 ⋅ 25
• 12 rounds in KECCAK-f [25]

• 24 rounds in KECCAK-f [1600]

𝜋

𝜒5



USING SPONGE FOR MAC

How can we attack it with DPA?

Key Padded message MAC



USING SPONGE FOR KEY STREAM

How can we attack it with DPA?

Key IV

Key stream



THE DUPLEX CONSTRUCTION*

• Allows the alternation of input and output blocks at the same rate as the sponge construction

• Input blocks are padded, and output blocks can be truncated

• Security equivalent to that of the sponge construction

• Keyed mode: part of the input is secret key

* G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. On the Indifferentiability of the Sponge Construction. EUROCRYPT 2008.



USING DUPLEX FOR AUTHENTICATED ENCRYPTION: XOODYAK*

* Joan Daemen, Seth Hoffert, Silvia Mella, Michaël Peeters, Gilles Van Assche, Ronny Van Keer. Xoodyak, a final update. Publication to NIST 
Lightweight Cryptography Standardization Process (round 3), 2022.

How can we attack it with DPA?

𝐾 𝑁 𝐴0 𝐴1 𝐴𝑛 𝑃0 𝑃1 𝑃𝑚𝐶0 𝐶1 𝐶𝑚 𝑇



USING DUPLEX FOR AUTHENTICATED ENCRYPTION: ASCON*

* C. Dobraunig, M. Eichlseder, F. Mendel, M. Schlaffer. Ascon v1.2: Lightweight Authenticated Encryption and Hashing. J. Cryptol., 2021.

How can we attack it with DPA?

𝐾 𝑁

𝐴0 𝐴𝑚 𝑃0 𝑃𝑛−1 𝑃𝑛𝐶0 𝐶𝑛−1 𝐶𝑛 𝑇

𝐼𝑉 𝐾 𝐾 𝐾



SCA COUNTERMEASURES

• Countermeasures can be applied on different levels
• Transistor-level: logical gates and circuits are built in such a way that the information leakage is 

reduced

• Program-level: dummy instructions, randomized order, etc. to make the alignment of traces 
more difficult

• Algorithmic level: operations are computed in a way that reduces information leakage

• Protocol level: limits the number of computations an attacker can perform with a given key

• No 100 % security

• Robustness: combine countermeasures at different levels

• Cost: area, energy and power consumption increase, loss of speed, . . .



MASKING

• Implemented at algorithmic level

• Purpose: breaking the link between sensitive variables and power consumption

• Principle: randomizing intermediate values with a secret sharing scheme
• Random masks hide the native intermediate values

• The power consumption depends on the randomized values on which the computation is 
performed (and not the native values)

• Each sensitive variable is split into multiple shares 

• When the splitting operation is an Exclusive OR (XOR), we refer to it as a Boolean masking

• Many Boolean masking schemes have been proposed over the years: ISW, TI, CMS, DOM, etc.



BOOLEAN MASKING — BASIC PRINCIPLES

• A dth-order (Boolean) masking scheme splits an internal sensitive value x into d + 1 shares

𝑥 = 𝑥(0)⊕𝑥(1) ⊕ …⊕𝑥(𝑑−1) ⊕𝑥(𝑑)

• Only the combination of all shares reveals 𝑥

• Any set of at most d shares should not leak information about 𝑥

• The number of traces required for a successful attack grows exponentially w.r.t. the 
security order d

random

𝑥(𝑑) = 𝑥(0) ⊕𝑥(1) ⊕ …⊕ 𝑥(𝑑−1)



BOOLEAN MASKING WITH 2 SHARES

F

𝒙 𝒙(𝟎) 𝒙(𝟏)

𝒛 𝒛(𝟎) 𝒛(𝟏)

𝒙 = 𝒙(𝟎) ⊕𝒙(𝟏)

𝒛 = 𝒛(𝟎) ⊕𝒛(𝟏)

𝒘 𝒘(𝟎) 𝒘(𝟏) 𝒘 = 𝒘(𝟎) ⊕𝒘(𝟏)

… … …

𝒙 = 𝑥0, 𝑥1, … , 𝑥𝑛−1 ∈ 𝔽2
𝑛

From linear algebra: linear maps preserve operations
𝑓 𝒖 + 𝒗 = 𝑓 𝒖 + 𝑓 𝒗 , 𝑓 𝑐𝒖 = 𝑐𝑓(𝒖)

𝑳 𝒙 = 𝑳 𝒙(𝟎) ⊕𝒙(𝟏) = 𝑳 𝒙(𝟎) ⊕𝑳 𝒙(𝟏)

𝒛𝟎 = 𝑳 𝒙(𝟎)

𝒛𝟏 = 𝑳(𝒙(𝟏))

𝑵 𝒙 = 𝑵 𝒙(𝟎) ⊕𝒙(𝟏) ≠ 𝑵 𝒙(𝟎) + 𝑵 𝒙(𝟏)

𝒘𝟎 = 𝑁0
′ 𝒙(𝟎), 𝒙(𝟏)

𝒘𝟏 = 𝑁1
′ 𝒙(𝟎), 𝒙(𝟏)

L F’

N

?L L

?N’



EXAMPLE: AND GATE WITH 2 SHARES

• Inputs: 𝑎 = 𝑎(0) ⊕𝑎(1), 𝑏 = 𝑏(0) ⊕𝑏(1)

• Goal: Compute 𝑧 = 𝑎 ⋅ 𝑏 in a masked way

• Naïve masked AND (not secure):

𝑧 = 𝑎(0) ⊕𝑎(1) ⋅ 𝑏 0 ⊕𝑏 1

= 𝑎(0) ⋅ 𝑏(0) ⊕𝑎(0) ⋅ 𝑏(1) ⊕𝑎 1 ⋅ 𝑏 0 ⊕𝑎(1) ⋅ 𝑏(1)

• 1 AND operation is replaced by 4 AND operations and 3 XOR operations



AND WITH CLASSICAL MASKING

𝑧 = 𝑎 0 ⋅ 𝑏 0 ⊕𝑎 0 ⋅ 𝑏 1 ⊕𝑎 1 ⋅ 𝑏 0 ⊕𝑎 1 ⋅ 𝑏 1

• It is fundamental to keep computed variables independent 
from native variables

• All partial products are independent of 𝑎 and 𝑏

• The resulting sum is not

• A fresh random share 𝑍 needs to be added to break the 
dependency between the intermediates

• If the intermediate result signal reach the XOR gate before 𝑍
then 𝑧 0 is not independent to the value of 𝑏

𝑎 0 𝑏 0 𝑏 1 𝑎 1 𝑍

𝑧 0 𝑧 1

𝑎 0 ⋅ 𝑏 0 ⊕𝑎 0 ⋅ 𝑏 1 = 𝑎 0 ⋅ 𝑏 0 ⊕𝑏 1 = 𝑎 0 ⋅ 𝑏



• Unintended interactions between shares can 
cause 1st order leakage

• It is fundamental to keep computed variables 
independent from native variables

• DOM idea: 
• keep the shares of all domains independent 

from shares of other domains

• secure domain crossings by adding a fresh 
random share 𝑍 and by using a register in 
order to prevent that glitches propagate from 
one domain to the other

AND WITH DOMAIN ORIENTED MASKING (DOM)

𝑧(0) = 𝑎(0) ⋅ 𝑏 0 ⊕𝑎 1 ⋅ 𝑏 0 ⊕𝑍

𝑧 1 = 𝑎(1) ⋅ 𝑏(1) ⊕𝑎(0)⋅ 𝑏(1) ⊕𝑍

𝑎(1) 𝑏 1𝑎(0)𝑏 0 𝑍

𝑧 0 𝑧 1



EXAMPLE: AND GATE WITH 3 SHARES

• Inputs: 𝑎 = 𝑎(0) ⊕𝑎 1 ⊕𝑎 2 , 𝑏 = 𝑏(0) ⊕𝑏(1) ⊕𝑏(2)

• Goal: Compute 𝑧 = 𝑎 ⋅ 𝑏 in a masked way

• Naïve masked AND (not secure):

𝑧 = 𝑎 0 ⊕𝑎 1 ⊕𝑎 2 ⋅ 𝑏 0 ⊕𝑏 1 ⊕𝑏 2

= 𝑎 0 ⋅ 𝑏 0 ⊕𝑎 0 ⋅ 𝑏 1 ⊕𝑎 0 ⋅ 𝑏 2 ⊕𝑎 1 ⋅ 𝑏 0 ⊕𝑎 1 ⋅ 𝑏 1 ⊕𝑎 1 ⋅ 𝑏 2

⊕𝑎 2 ⋅ 𝑏 0 ⊕𝑎 2 ⋅ 𝑏 1 ⊕𝑎 2 ⋅ 𝑏 2

• 1 AND operation is replaced by 9 AND operations and 8 XOR operations



EXAMPLE: MONOMIAL OF DEGREE 3 WITH 2 SHARES

• Inputs: 𝑎 = 𝑎(0) ⊕𝑎(1), 𝑏 = 𝑏(0) ⊕𝑏 1 , 𝑐 = 𝑐(0) ⊕ 𝑐(1)

• Goal: Compute 𝑧 = 𝑎 ⋅ 𝑏 ⋅ 𝑐 in a masked way

• Naïve masked AND (not secure):

𝒛 = 𝑎(0) ⊕𝑎(1) ⋅ 𝑏 0 ⊕𝑏 1 ⋅ 𝑐 0 ⊕ 𝑐 1

= (𝑎(0)⋅ 𝑏 0 ⊕𝑎 0 ⋅ 𝑏 1 ⊕𝑎 1 ⋅ 𝑏 0 ⊕𝑎 1 ⋅ 𝑏 1 ) ⋅ 𝑐 0 ⊕ 𝑐 1

= 𝑎(0) ⋅ 𝑏 0 ⋅ 𝑐 0 ⊕𝑎 0 ⋅ 𝑏 1 ⋅ 𝑐 0 ⊕𝑎 1 ⋅ 𝑏 0 ⋅ 𝑐 0 ⊕𝑎 1 ⋅ 𝑏 1 ⋅ 𝑐 0

⊕𝑎(0) ⋅ 𝑏 0 ⋅ 𝑐 1 ⊕𝑎 0 ⋅ 𝑏 1 ⋅ 𝑐 1 ⊕𝑎 1 ⋅ 𝑏 0 ⋅ 𝑐 1 ⊕𝑎 1 ⋅ 𝑏 1 ⋅ 𝑐 1

• 1 AND operation is replaced by 16 AND operations and 7 XOR operations



GENERALIZING

• Linear operations can simply be duplicated and performed on each share 
independently, i.e. a linear increase in the area/time

• Non-linear parts grow exponentially

• To protect against dth-order DPA, the minimal number of shares is d + 1

• The number of expansion monomials of a multiplication is then 𝑑 + 1 2

• A monomial of degree t expands to 𝑑 + 1 𝑡 monomials

Designing algorithms with simpler nonlinear operations can ease masking



THE       FUNCTION*

𝜒𝑛: 𝔽2
𝑛 → 𝔽2

𝑛

𝑥𝑖 ← 𝑥𝑖 ⊕𝑥𝑖+1 ⋅ 𝑥i+2

• Example: KECCAK (SHA-3) uses 𝜒5

𝑥0 ← 𝑥0 ⊕𝑥1 ⋅ 𝑥2
𝑥1 ← 𝑥1 ⊕𝑥2 ⋅ 𝑥3
𝑥2 ← 𝑥2 ⊕𝑥3 ⋅ 𝑥4
𝑥3 ← 𝑥3 ⊕𝑥4 ⋅ 𝑥0
𝑥4 ← 𝑥4 ⊕𝑥0 ⋅ 𝑥1

𝝌𝒏

* Joan Daemen. Cipher and hash function design, strategies based on linear and differential cryptanalysis, PhD Thesis. K.U.Leuven, 1995. http://jda.noekeon.org/.

http://jda.noekeon.org/


IS MASKING-FRIENDLY

• Bitwise operation → naturally suited to masking

• Algebraic degree 2 → low number of expansion monomials 

• Local regular structure → parallelizable

• Of course, good cryptographic properties and implementation advantages

𝜒𝑛 is often used because it's naturally friendly to side-channel protections

𝝌𝒏



IN MANY LIGHTWEIGHT DESIGNS

𝜒5 in KECCAK

𝜒3 in XOODOO

𝜒257 in SUBTERRANEAN

𝜒5ASCON S-box based on 

𝝌𝒏



MASKING

• 𝜒 ∶ 𝑥𝑖 ← 𝑥𝑖 ⊕ (𝑥𝑖+1 ⊕1) ⋅ 𝑥𝑖+2 becomes:

𝑧 = 𝑥𝑖
(0)

⊕𝑥𝑖
(1)

⊕ 𝑥𝑖+1
0
⊕𝑥𝑖+1

1
⊕1 𝑥𝑖+2

0
⊕𝑥𝑖+2

1

= 𝑥𝑖
(0)

⊕𝑥𝑖
1
⊕𝑥𝑖+1

0
⋅ 𝑥𝑖+2

0
⊕𝑥𝑖+1

0
⋅ 𝑥𝑖+2

1
⊕𝑥𝑖+1

1
⋅ 𝑥𝑖+2

0
⊕𝑥𝑖+1

1
⋅ 𝑥𝑖+2

(1)
⊕𝑥𝑖+2

(0)
⊕𝑥𝑖+2

(1)

• We distribute the terms, e.g.:

𝑥𝑖
(0)

= 𝑥𝑖
(0)

⊕ (𝑥𝑖+1
0
⊕1) ⋅ 𝑥𝑖+2

0
⊕𝑥𝑖+1

0
⋅ 𝑥𝑖+2

1

𝑥𝑖
1

= 𝑥𝑖
1
⊕ (𝑥𝑖+1

1
⊕1) ⋅ 𝑥𝑖+2

(1)
⊕𝑥𝑖+1

1
⋅ 𝑥𝑖+2

0

• Cost: 1 XOR, 1 AND and 1 NOT replaced by 4 XOR, 4 AND and 2 NOT

𝝌𝒏



• 𝑥𝑖 ← 𝑥𝑖 ⊕𝑥𝑖+1 ⋅ 𝑥i+2

• 𝑥𝑖
(0)

and 𝑥𝑖
1

play the role of fresh random Z

MASKING       WITH DOM𝝌𝒏



𝜒3: 𝔽2
3 → 𝔽2

3

𝑥0 ← 𝑥0 ⊕𝑥1 ⋅ 𝑥2
𝑥1 ← 𝑥1 ⊕𝑥2 ⋅ 𝑥0
𝑥2 ← 𝑥2 ⊕𝑥0 ⋅ 𝑥1

EXAMPLE: 

3 AND

3-bit register

3 XOR

𝝌𝟑



AES S-BOX PROTECTED WITH DOM

Hannes Gross and Stefan Mangard and Thomas Korak. Domain-Oriented Masking: Compact Masked Hardware Implementations with Arbitrary 

Protection Order. ACM Workshop on Theory of Implementation Security 2016



XOODOO PROTECTED WITH DOM

Protection order Area (μm2) GE Ratio

Unprotected 7572.22 9489 1.00

1st 25802.80 32334 3.41

2nd 49237.66 61700 6.50

3rd 79923.16 100154 10.55

4th 118729.36 148784 15.68

Table: ASIC synthesis figures for NanGate 45nm @100MHz

Parisa Amiri Eliasi, Silvia Mella, Léo Weissbart, Lejla Batina, Stjepan Picek. A comprehensive evaluation of side-channel resistance of Xoodyak
hardware implementations. Journal of Circuits, Systems, and Computers, 2025.



SCA SETUP

Sakura-G1 evaluation board equipped with a Xilinx Spartan-6 FPGA,
and Lecroy WaveRunner 610Zi oscilloscope

1 https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html


TVLA ON UNPROTECTED IMPLEMENTATION

Figure: First-order TVLA on unprotected implementation using 50 power traces



TVLA ON PROTECTED IMPLEMENTATION – 1ST ORDER

Figure: First-order TVLA on first-order protected implementation using 2.5 million power traces



TVLA ON PROTECTED IMPLEMENTATION – 2ND ORDER

Figure: Second-order TVLA on first-order protected implementation using 2.5 million power traces



: A GENERALIZATION OF 

• 𝜒𝑛 is a permutation if and only if n is odd

• What can we do when n is even?

𝝌𝒏

Y. Belkheyar, P. Derbez, S. Ghosh, G. Leander, S. Mella, L. Perrin, S. Rasoolzadeh, L. Stennes, S. Sun, G. Van Assche, D. Vizár. ChiLow and ChiChi: new constructions for 
code encryption. EUROCRYPT 2025. 

Theorem

For m even,            is a bijection

Fact

is EAE to two parallel      and 
inherits its properties



OPEN QUESTIONS

• Can we prove that      is bijective for any m ?

• Can we generalize it while maintaining or improving the properties of      ?



THE ORDER OF LAYERS

• Cryptographic permutations usually consist of
• One non-linear layer (usually S-box layer)

• Mixing layer

• Rotations 

• Round constant addition

• In XOODOO: 𝜌𝑒𝑎𝑠𝑡 ∘ 𝜒 ∘ 𝜄 ∘ 𝜌𝑤𝑒𝑠𝑡 ∘ 𝜃
• mixing layer → rotation → const. add → non-linear layer → rotation

• In ASCON-p: 𝑝𝐿 ∘ 𝑝𝑆 ∘ 𝑝𝐶
• const. add → non-linear layer → mixing layer

Does the order of operations have an impact on SCA ? 



THE GASTON* AND GASTON-R PERMUTATIONS

• Same components but different order of layers
• State like in ASCON-p

• Mixing layer inspired by KECCAK

• Non-linear layer is 𝜒5

• GASTON (original design): mixing layer before non-linear layer

• GASTON-R (modified by us): mixing layer after non-linear layer

Permutation Area (μm2) GE Ratio

ASCON-p 4956.38 6211 1.000

GASTON 5244.72 6572 1.058

GASTON-R 5028.73 6302 1.015

Table: ASIC synthesis figures for NanGate 45nm @1GHz

* Solane El Hirch, Joan Daemen, Raghvendra Rohit, Rusydi H. Makarim. Twin Column Parity Mixers and Gaston - A New Mixing Layer and Permutation. CRYPTO 2023.



CPA RESULTS*

Permutation Number of key bits recovered (tot. 128)

ASCON-p 100% with 31,000 traces

GASTON < 90% with 100,000 traces

GASTON-R 50% with 18,000 traces†

† no non-linear term involving first half of the key and nonce

ASCON-p GASTON GASTON-R

* Under submission



OPEN QUESTIONS

• What is the impact on other permutations/block ciphers?

• What is the impact on other types of SCA (like TA, collision attacks, etc.)?

• Can the Success Rate on Gaston-R be improved by attacking 2nd round?



ASCON MODE 

• Recovering the state during AD and P processing does not directly lead to key recovery or 
forgeries

• This allows more efficient protection against DPA with leveled implementations
• The degree of algorithmic countermeasures can be reduced for certain parts of a cryptographic 

computation

• Data can be processed at higher speed with a lower protection level



NECESSARY CONDITIONS FOR DPA/CPA

• We can collect measurements corresponding to multiple executions where
• The secret data (usually the key) is fixed

• The known data (usually the message) changes per execution

• If we can remove these conditions, then DPA/CPA are prevented

• Ideas:
• Refresh the key at each execution → the target keeps moving 

• Limit the known data that can be exploited



EXAMPLE : ISAP*

• Submission to the NIST lightweight competition

• Sponge-based mode of operation for authenticated encryption

• Can be instantiated with either Ascon-p or Keccak-p[400] as the underlying permutation

• Encrypt-then-MAC paradigm

* Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart Mennink, Robert Primas and Thomas Unterluggauer. ISAP v2.0 

Submission to the NIST Lightweight Cryptography competition. https://isap.isec.tugraz.at/publications.html

encryption 𝓔 decryption 𝓓

https://isap.isec.tugraz.at/publications.html


ISAPENC

• Stream encryption with keyed sponge

• Encryption Subkey 𝐾𝐸
∗ generated by ISAPRK and different for every N

• Decryption is identical with M and C swapped
• An adversary could exploit multiple decryptions with the same nonce N

• To prevent such a DPA scenario, verification is performed prior to decryption

• If verification fails, decryption does not start

We cannot collect multiple 
measurements with the 
same fixed key



ISAPMAC

• Sponge-based hash function to build a suffix-MAC

• Subkey 𝐾𝐴
∗ generated by ISAPRK and different for every call

• For verification, the tag is re-computed in the same way and compared with the received tag T

We cannot collect multiple 
measurements with the 
same fixed key



ISAPRK

• DPA made infeasible by reducing the input data complexity exploitable
• If 𝑟𝐵 = 1, only two possible traces

• Sponge-based equivalent of GGM1 mode for AES

• Tradeoff: rate highly restricted reduced number of rounds of 𝑝𝐵

1 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the ACM. doi: 10.1145/6490.6503

We cannot collect 
enough measurements 
with different known data



SUMMARY

• Side-channel and fault countermeasures often result in bigger area and higher execution 
time

• Protected implementations may still leak if not correctly crafted!

• Algorithm structure can simplify protections by
• Using masking-friendly components

• Combining operations such that the attack complexity increases

• Using modes that can either reduce the attack surface or prevent them

Thank you for your attention!


	Slide 1
	Slide 2: Who am i?
	Slide 3: BEFORE we start
	Slide 4: PHYSICAL ATTACKS
	Slide 5: COUNTERMEASURES
	Slide 6: DESIGN-LEVEL RESISTANCE
	Slide 7: ROADMAP OF TODAY
	Slide 8: DPA - main concepts
	Slide 9: DPA on AES
	Slide 10: generalization
	Slide 11: The sponge construction*
	Slide 12: Keccak-f [b]
	Slide 13: Using sponge for MAC
	Slide 14: Using sponge for key stream
	Slide 15: The duplex construction*
	Slide 16: Using duplex for authenticated encryption: Xoodyak*
	Slide 17: Using duplex for authenticated encryption: Ascon*
	Slide 18: SCA Countermeasures
	Slide 19: Masking
	Slide 20: Boolean Masking — Basic Principles
	Slide 21: Boolean Masking with 2 shares
	Slide 22: EXAMPLE: AND Gate with 2 shares
	Slide 23: And with classical masking
	Slide 24: AND with domain oriented masking (DOM)
	Slide 25: EXAMPLE: AND Gate with 3 shares
	Slide 26: EXAMPLE: monomial of degree 3 with 2 shares
	Slide 27: Generalizing
	Slide 28: THE       FUNCTION*
	Slide 29:       Is masking-friendly
	Slide 30:      in many lightweight designs
	Slide 31: Masking
	Slide 32: Masking       with dom
	Slide 33: EXAMPLE: 
	Slide 34: Aes s-box protected with dom
	Slide 35: XOODOO PROTECTED WITH DOM
	Slide 36: SCA SETUP
	Slide 37: TVLA on unprotected implementation
	Slide 38: TVLA on protected implementation – 1st order
	Slide 39: TVLA on protected implementation – 2nd order
	Slide 40:     : A Generalization of 
	Slide 41: OPEN questions
	Slide 42: The Order of layerS
	Slide 43: The Gaston* and Gaston-R permutations
	Slide 44: CPA results*
	Slide 45: OPEN questions
	Slide 46: Ascon mode 
	Slide 47: Necessary conditions for DPA/CPA
	Slide 48: EXAMPLE : ISAP*
	Slide 49: isapenc
	Slide 50: Isapmac
	Slide 51: isaprk
	Slide 52: summary

