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When will a large-scale quantum computer be built?

”I estimate a 1/7 chance of breaking RSA-

2048 by 2026 and a 1/2 chance by 2031.”

Michele Mosca [NIST, April 2015]

https://eprint.iar.org/2015/1075 
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Authenticated key exchange & symmetric encryption
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Learning With Errors



Learning With Errors (LWE) problem

A system of linear equations can be easily solved ...
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sA b =

Given blue, find red



Learning With Errors (LWE) problem, cont.
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... but not if errors (small noise) are added

Given blue, find red (search LWE problem)

sA b =e+

Given A, distinguish b from unifrmy random (decision LWE problem)

Hard even if A is over ring  𝑍𝑞 𝑋 /𝑓(𝑋) for certain 𝑓(𝑋)



Learning With Errors (LWE) problem, cont.
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sA b =e+

Private (secret) key, 𝑠𝑘

Public key, 𝑝𝑘



Module LWE
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Why ``lattice-based´´?

• Module-LWE problem can be interpreted as a version of the 

Closest Vector Problem (CVP) in a structured q-ary lattice

• This CVP instance can be solved by finding an unusually 

short vector in a related lattice

• a version of the Shortest Vector Problem (SVP)
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All solutions to          

b = As + e mod q

form a “shifted” lattice

The goal is to find the 

point closest to the origin 



ML-KEM (CRYSTALS-Kyber)



Module Lattice Key Encapsuation Mechanism

• Security is based on the hardness of LWE in module lattices

• PKE algorithms: 𝑝𝑘 is public key

– Key generation, (𝑝𝑘, 𝑠𝑘) = PKE.KeyGen() 𝑠𝑘 is secret (private) key

– Encryption, 𝑐 = Encrypt(𝑝𝑘,𝑚, 𝑟) 𝑟 is random coin

– Decryption, 𝑚 = Decrypt(𝑠𝑘, 𝑐) 𝑚 is message

• KEM algorithms:

– Key generation, (𝑝𝑘, 𝑠𝑘) = KEM.KeyGen()

– Encapsulation, (𝑐, 𝐾) = Encaps(𝑝𝑘) 𝐾 is shared key

– Decapsualtion, 𝐾 = Decaps(𝑐, 𝑠𝑘) 
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𝑐 is ciphertext, 𝑐 = (𝒖, 𝑣)



ML-KEM parameters
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• 𝑍𝑞 is the ring of integers modulo a prime 𝑞 = 213 – 29 + 1

• 𝑅𝑞 is the polynomial ring  𝑍𝑞 𝑋 /(𝑋𝑛 + 1), where 𝑛 is the ring 
dimension

• ML-KEM works with vectors of ring elements in 𝑅𝑞
𝑘, where k is the 

rank of the module defining the security level

• Inputs and outputs to all API functions of ML-KEM are byte arrays



Key generation algorithm
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Output: public key 𝑝𝑘, secret key 𝑠𝑘

gen(A)
A

s e

+ b = As + e 

𝑝𝑘 = (A, b)

𝑠𝑘 = s



gen(s) gen(e)
Sampled from a 

uniform distribution 

Sampled from a centered binomial 

distribution with parameter μ1



Encryption algorithm
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Input: public key 𝑝𝑘 = (A, b), message m

Output: ciphertext c = (𝒖, v)

A

gen(s)

s’ e’

+ 𝒖 = As’ + e’ 

b + v = bs’ + e’’ + encode(m) 

s’ e’’

m: (0,1,1,0, …)

encode

+

(multiply by q/2)gen(e)

encode(m) = (0,q/2,q/2,0, …)





Encode converts a 

binary message m into 

a polynomial with 

coefficients q/2  m[j], 

where m[j] is jth bit of m
Sampled 

from Bμ1

Sampled 

from Bμ2



small

Decryption algorithm
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Input: ciphertext c = (𝒖, v), secret key 𝑠𝑘 = s

Output: message m

𝒖
-

s v

decode

b = As + e 

𝒖 = As’ + e’ 

v = bs’ + e’’ + encode(m) 

v – 𝒖 s

0

q/2

0

1

m

= encode(m) + (es’ + e’’ + e’s)





Encapsulation algorithm
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Decapsulation algorithm
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A version of Fujisaki-Okamoto (FO) transform is used to create an IND-CCA2 

secure KEM from an IND-CPA secure PKE

IND-CPA = Indistinguishability against chosen-plaintext attacks

IND-CCA2 = Indistinguishability against adaptive chosen-ciphertext attacks

Decrypt

Encrypt

G

H

KDF

=

c

c

z K

K

r

m
1

0

𝑝𝑘

𝑠𝑘

H𝑝𝑘
Input: c, 𝑠𝑘

Output: K



IND-CPA and IND-CCA2

• IND-CPA means that one cannot distinguish two ciphertexts 

based on the messages they encrypt

– Basic requirement for most provably secure PKE schemes

• IND-CCA2 means that one cannot improve the guess by 

allowing the use of a decryption oracle that can decrypt any 

ciphertexts except the given ones
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Shared key establishment protocol
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𝑝𝑘, 𝑠𝑘 = KEM.KeyGen()
𝑝𝑘

𝑐

𝑐 = Encrypt(𝑝𝑘,𝑚, 𝑟)

𝑚 ← 𝒰( 0,1 256)

Encaps(𝑝𝑘)

ത𝐾, 𝑟 = 𝒢(𝑚,ℋ(𝑝𝑘))

𝐾 = KDF( ത𝐾,ℋ(𝑐))

Party 1 Party 2

Decaps(𝑠𝑘 = ((𝐬, 𝑝𝑘,ℋ 𝑝𝑘 , 𝑧), 𝑐)

𝑚′= Decrypt(𝐬, 𝑐)

𝐾 = KDF( ത𝐾′,ℋ(𝑐))

ത𝐾′, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))

𝑐′ = Encrypt(𝑝𝑘,𝑚′, 𝑟′)
if 𝑐 = 𝑐′: 

else
𝐾 = KDF(𝑧,ℋ(𝑐))



ML-DSA (CRYSTALS-Dilithium)



Module Lattice Digital Signature Scheme

Security is based on the hardness of LWE in module lattices and a 

version of the module short integer solution (M-SIS) problem

𝑝𝑘 is public key

• Key generation, (𝑝𝑘, 𝑠𝑘) = KeyGen() 𝑠𝑘 is secret key

• Signing,  = Sign(s𝑘,𝑚)  is signature

• Verification, Verify(𝑝𝑘,𝑚,)            𝑚 is message

• Inputs and outputs to all API functions are byte arrays (as in Kyber)

 unpacking of the byte arrays into the polynomial coefficients and vice 

versa must be performed
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ML-DSA parameters
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prime 𝑞 = 233 – 213 + 1



ML-DSA key generation algorithm (simplified)
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Output: public key 𝑝𝑘, secret key 𝑠𝑘

...

...

b = As + e  in ML-KEM 

𝑝𝑘 = (A, b)

𝑠𝑘 = s

Drops d low-order 

bits of each 

coefficient of t

Packing into 

byte arrays



ML-DSA signing algorithm (simplified)
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Input: secret key 𝑠𝑘, message m
Output: signature 

Unpacking of 

byte arrays

...

m

...

...

Many side-channel 

attacks target this point



Authentication protocol
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𝑝𝑘, 𝑠𝑘 = KeyGen() 𝑝𝑘

Party 1 Party 2

m,
Sign(𝑠𝑘,𝑚) Verify(𝑝𝑘,𝑚,)



Side-channel and fault attacks



What is a physical attack?
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Conventional 

cryptanalysis
Mathematical 

algorithm
TARGETS

Side-channel & 

fault attacks

Physical 

device

Side-channel information

Cryptosystem
Input Output

Fault injection

TARGET



Side-Channel Analysis (SCA)
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photo credit: Martin Brisfors

• Algorithms are implemented in MCUs, CPUs, FPGAs, ASICs,…

• Different operations may consume different amount of 
power/time

• The same operation executed                                                     
on different data may consume                                                    
different amount of power/time

• It may be possible to recognize                                              
which operations and data are                                        
processed from power/time  

• ML techniques are useful  

ChipWhisperer-Lite



Fault Injection (FI)
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• Clock glitching:

– Inject/withhold rising edge in clock 

signal

• Voltage glitching:

– Short power supply

ChipWhisperer-Husky

• Inexpensive ($550), easy to use

• Requires precise timing

photo credit: Sönke Jenral



Voltage glitching parameters
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SCA example of AES-128 on 32-bit MCU 

1 2 3 4 5 6 7 8 9 10

block 1 block 2picture credit: Ruize Wang
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How Deep Learning (DL) helps?
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Profiling stage: Train a neural network using traces from 

profiling devices 

Random 

plaintexts

Training set Neural network

Label = 2

Label = 0

Label = 1

Label = 255

Label = 254

Label = 253

...

Profiling 

device



How Deep Learning (DL) helps?
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Attack stage: Use the trained network to classify traces from 

the device under attack

Random 

plaintexts

Test traces Trained networkDevice 

under 

attack

Label = 2

Label = 0

Label = 1

Label = 255

Label = 254

Label = 253

...

σ𝑝𝑖 = 1

0.01

0.05

0.68

0.10

0.03

0.02



Attack scenario for ML-KEM
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𝑝𝑘, 𝑠𝑘 = KEM.KeyGen() 𝑝𝑘

𝑐
𝑐 = Encrypt(𝑝𝑘,𝑚, 𝑟)

𝑚 ← 𝒰( 0,1 256)

Encaps(𝑝𝑘)

ത𝐾, 𝑟 = 𝒢(𝑚,ℋ(𝑝𝑘))

𝐾 = KDF( ത𝐾,ℋ(𝑐))

Party 1 Party 2

Decaps(𝑠𝑘 = ((𝐬, 𝑝𝑘,ℋ 𝑝𝑘 , 𝑧), 𝑐)

𝑚′= Decrypt(𝐬, 𝑐)

𝐾 = KDF( ത𝐾′,ℋ(𝑐))

ത𝐾′, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))

𝑐′ = Encrypt(𝑝𝑘,𝑚′, 𝑟′)
if 𝑐 = 𝑐′: 

else
𝐾 = KDF(𝑧,ℋ(𝑐))
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ℳ = TrainModel(𝑇𝑝, 𝑚𝑝)

𝑇𝑝 ↜ Decaps(𝑠𝑘𝑝, 𝑐𝑝)

𝑝𝑘𝑝, 𝑠𝑘𝑝 = KeyGen()

𝑚𝑝 ← 𝒰( 0,1 256)

𝑐𝑝= Encrypt(𝑝𝑘𝑝, 𝑚𝑝, 𝑟𝑝)

Profiling stage

Party 1 Party 2

𝑝𝑘, 𝑠𝑘 = KeyGen()

K = Decaps(𝑠𝑘, 𝑐)
𝑇

𝑚′=ℳ 𝑇

𝑝𝑘

𝑐
𝑐

𝑝𝑘

Attack stage for 
shared key recovery

(𝑐,K ) = Encaps(𝑝𝑘)

𝐾 = KDF( ത𝐾′,ℋ(𝑐))

ത𝐾′, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))

𝐾1 = Decaps(𝑠𝑘, 𝑐1)
𝑇1, 𝑇2, …

𝑚1 =ℳ(𝑇1)

𝑐1, 𝑐2,…

Attack stage for 
secret key recovery

𝐾2 = Decaps(𝑠𝑘, 𝑐2)
…

𝑚2 =ℳ(𝑇2)…
𝑠𝑘 = RecoverKey(𝑚1, 𝑚2, … )

If 𝑚 is used as a 

label, profiling 

traces can be 

captured from the 

device under attack 

since 𝑝𝑘 is used to 

compute 𝑐



Attack scenario for ML-DSA
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𝑝𝑘, 𝑠𝑘 = KeyGen()
𝑝𝑘

Party 1 Party 2

Verify(𝑝𝑘,𝑚,)
𝑚,

Sign(𝑠𝑘,𝑚)
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ℳ = TrainModel(𝑇𝑝, 𝑠𝑘𝑝)

𝑇𝑝 ↜ Sign(𝑠𝑘𝑝, 𝑚𝑝)

𝑝𝑘𝑝, 𝑠𝑘𝑝 = KeyGen()

Profiling stage

Party 1 Party 2

Since 𝑠𝑘 is used as 

labels, traces for 

profining cannot be 

captured from the 

device under attack

𝑇

Attack stage for 
secret key recovery

𝑠𝑘′ = ℳ(𝑇)

𝑝𝑘, 𝑠𝑘 = KeyGen()
𝑝𝑘 𝑝𝑘

𝑚,
Sign(𝑠𝑘,𝑚)

𝑚,

𝑠𝑘 = RecoverKey(𝑠𝑘′)



Countermeasures



Masking and shuffling countermeasures
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1 1 1 1 0 0 0 0

0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1

Secret 

Random mask

changed at each 

execution

Secret  Random mask

``´´ is bitwise XOR

1 1 1 1 0 0 0 0

Secret 

0 0 1 0 1 0 1 1

Secret permuted

First-order Boolean masking

share 1 share 2

Shuffling



How DL helps break masking
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Messages m 

generated at 

random 

Ciphertexts 

c = Encrypt(pk,m) 

Training

traces

m[j] = 1

......
...

Labels = 

jth bit of m
Model Nj

PROFILING STAGE

m[j] = 0

m[j] = 0

r[j]m[j]r[j]

Device under 

attack

Test traces

σ𝑝 = 1

p[m[j]=0] 

p[m[j]=1] 

...
...

jth bit of  m = 

Decrypt(sk,c) 

Model Nj

ATTACK STAGE

Ciphertext 

c

r[j]m[j]r[j]

Device under 

attack

A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM Implementation, 

K. Ngo, E. Dubrova, Q. Guo, T. Johansson, TCHES’2021(4), 676-707



Attacks on ML-KEM and ML-DSA
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Six attacks on software implementations

• ML-KEM:

• DL-SCA on an unmasked implementation

• DL-SCA on a first-order masked & shuffled implementation

• FI attack on a first-order masked & shuffled implementation

• DL-SCA on a higher-order masked implementation

• ML-DSA

• DL-SCA on an unmasked implementation

• FI attack on an unmasked implementation
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Secret key recovery attack on unmasked 

Kyber using k chosen ciphertexts

A Side-Channel Secret Key Recovery Attack on CRYSTALS-Kyber 

Using k Chosen Ciphertexts, R. Wang, E. Dubrova, C2SI’2023



Attack details 

• Kyber-768 C implementation: 

• Kannwischer, M.J., Petri, R., Rijneveld, J., Schwabe, P., Stoffelen, K.: 

PQM4: Post-quantum crypto library for the ARM Cortex-M4, 

https://github.com/mupq/pqm4 

• Complied with optimization level -O3

• Attack point: 

– Decryption step of decapsulation

• message decoding and polynomial                                                

reduction procedures

• Target board:

– ARM Cortex-M4 in CW308TSTM32F4
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photo credit: Ruize Wang



Message decoding and polynomial reduction 
procedures
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Power trace of poly_reduce() and poly_tomsg()
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8 message bits

16 polynomial coefficients



Leakage analysis of poly_ tomsg() 
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(a) Power trace of poly_tomsg(); (b) T-test for 8 message bits (100K traces)

m[i] = 0 

vs 

m[i] = 1



Leakage analysis of poly_ reduce() 
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(a) Power trace of poly_reduce(): (b,c,d) T-test for 16 poly. coeff. (100K traces)

HW(input) = 0 vs 

HW(input) = 11

HW(tmp) = 0 vs 

HW(tmp) = 13

HW(output) = 0 vs 

HW(output) = 6



Distributions of power consumption for 
different intermediate variables
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Chosen ciphertext construction method

The secret key 𝒔 consists three polynomials 𝒔 = (𝑠0, 𝑠1, 𝑠2)

The ciphertext 𝑐 = 𝒖, 𝑣 consists of 𝒖 = (𝑢0, 𝑢1, 𝑢2) and 𝑣

To recover n coefficients of 𝑠𝑖, we set:

Then, for 𝑖 ∈ 0,1,2 , 𝑚 𝑗 is a function of the tuple 𝑘0, 𝑘1, 𝑠𝑖 𝑗 :
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𝑘0− 𝑘1𝑠𝑖 𝑗 𝑥𝑗𝑇



Chosen ciphertext construction, cont.

Search through all possible 𝑘0, 𝑘1 ∈ 𝑍𝑞 to construct 𝑐 = 𝒖, 𝑣

such that:

1. The number of different HWs of poly_reduce() intermediate 

variables is minimized

2. Hamming distances between poly_reduce() intermediate 

variables are maximized

3. There are both 0 and 1 message bits in poly_tomsg()

4. Given 1-3, all five key coefficients are uniquely defined
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Mapping of intermediate values into secret key 
coefficients for k0 = 0 and k1 = 1369
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Mapping of MLP’s labels into secret key 
coefficients for k0 = 0 and k1 = 1369
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Empirical secret key recovery results 
(mean for 100 different secret keys)
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N  k

For profiling device                   For device under attack

Single 

coefficient

Full 

key

Max

# enum.

Single 

coefficient

Full 

key

Max

# enum.

1  3 0.9990 0.47 58 0.9940 0.02 516

10  3 0.9997 0.81 53 0.9990 0.43 54

20  3 0.9997 0.81 53 0.9991 0.45 53

50  3 0.9997 0.81 52 0.9994 0.53 52

100  3 0.9997 0.81 52 0.9994 0.53 52



Number of chosen ciphertexts required for 
Kyber-768 secret key recovery
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Secret key recovery attacks on a 

masked and shuffled ML-KEM

Secret Key Recovery Attack on Masked and Shuffled Implementations of 

CRYSTALS-Kyber and Saber, L. Backlund, K. Ngo, J. Gärtner, E. 

Dubrova, in ACNS Workshops, 2023

Breaking SCA-Protected CRYSTALS-Kyber with a Single Trace, S. 

Jendral, K. Ngo, R. Wang, E. Dubrova, HOST’2024



Attack details

• Kyber-768 C implementation (with shuffling added): 

• Heinz, D.,Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, 

P., Sprenkels: First-order masked Kyber on ARM Cortex-M4. 

Cryptology ePrint Archive, Report 2022/058

• Complied with optimization level -O3

• Attack point: 

– Decryption step of decapsulation  

• message decoding  

• Fisher-Yates index generation and usage

• Target board:

– ARM Cortex-M4 in CW308TSTM32F4
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photo credit: Linus Backlund



Message recovery for a shuffled implementation
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1 0 1 0 1

0 1 2 3 4Index

m
1 0 1 0 1

4 3 1 0 2
Permuted

index

m

Individual message bits can be recovered, but their order is unknown



Previous approaches based on bit flipping
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1 0 1 0 1m

0 0 1 0 1m'

HW(m) = 3

HW(m') = 2

m[0] = 1

Ravi, P., Bhasin, S., Roy, S., Chattopadhyay, A., On exploiting message leakage in 

(few) NIST PQC candidates for practical message recovery and key recovery 

attacks, https://eprint.iacr.org/2020/1559.pdf

Ngo, K., Dubrova, E., Johansson, T., Breaking masked and shuffled CCA secure

Saber KEM by power analysis, ASHES’2021



Fisher-Yates (FY) index usage
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T-test on 5K traces



FY index generation
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T-test on 5K traces



Distributions of power consumption for FY 
index generation
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P
ro

b
a
b
ili

ty
 m

a
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s

Only FY indexes with HW = 0 and 8 can be distinguished with a high 

probablitiy (from a single trace)

Solution: Recover message bits with these indexes only & rotate cyclically



The maximum number of traces required for 
secret key recovery in all 10 attacks
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Algorithm Code distance

8 6 4

Saber ASHES’21 bit flipping method - - 61680

Saber FY index recovery method - 4608 9216

Kyber FY index recovery method 48384 38016 59136

13 times 

smaller



Skipping shuffling with a fault injection
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Initialization

Shuffling

Voltage glitch injection

(0.89 success rate)

FY index generation



Message recovery attack on a higher-

order masked ML-KEM

Breaking a Fifth-Order Masked Implementation of

CRYSTALS-Kyber by Copy-Paste, E. Dubrova, K. Ngo, J. Gärtner 

R. Wang, RWC’23, APKC’23



Attack details

• Kyber-768 C implementation (extended to higher orders):

• Heinz, D.,Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, 

P., Sprenkels: First-order masked Kyber on ARM Cortex-M4. 

Cryptology ePrint Archive, Report 2022/058 (2022)

• Complied with optimization level -O3

• Attack point: 

– Re-encryption step of decapsulation  

• message encoding  

• Target board:

– ARM Cortex-M4 in CW308TSTM32F4

PROACT 2025 70

photo credit: Kalle Ngo



Non-masked message encoding in Kyber 
implementation of Kannwischer et al. 
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Mask takes values 0x0000 or 0xFFFF

Large difference in Hamming weight  easy to distinguish

First described by Amiet et al. for NewHope KEM, ICPQC’2020

/* bit extraction */



Distributions of power consumption for 
message bits
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Non-overlapping distributions   easy to distinguish
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Masked message encoding in Kyber 
implementation on Heinz et al. 
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/* Boolean share 0 bit extraction */

/* Boolean share 1 bit extraction */



Segment of power trace of re-encryption in 
Kyber implementation on Heinz et al. 
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32 bytes of share 1 32 bytes of share 2

masked_poly_frommsg()masked_poly_addnoise()

byte



More shares  more 32-byte blocks
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6



Copy-paste method
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Power traces 

(cut & concatenated 

ith bits of shares)
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BatchNorm.1 layer

after training
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1) Copy/paste

3) Train

Weights of MLP 

BatchNorm.1 layer 

after trainingbefore training

2) Extend



Attack results for the first-order masking
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Attack 

type

Mean empirical probability to recover ith message bit
Avg.

0 1 2 3 4 5 6 7

Single-

trace
0.9992 0.9989 0.9953 0.9841 0.9876 0.9835 0.9393 0.9067 0.9743

With 4 

rotations
0.9994 0.9991 0.9993 0.9990 0.9988 0.9885 0.9993 0.9992 0.9991



20-trace attack results for 5-order masking
(with 4 negacyclic rotations and 5 repetitions)
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ω Mean empirical probability to recover ith message bit
Avg.

0 1 2 3 4 5 6 7

5 1.0000 0.9987 1.0000 0.9989 1.0000 0.9992 1.0000 0.9988 0.9995

ω 5

pmesage 0.8709

Since ranom masks are updated at each execution,

errors in repeated measurments are more 

independent than in the non-masked case



Secret Key Recovery Attacks on ML-DSA

Ruize Wang, Kalle Ngo, Joel Gärtner, Elena Dubrova, Ruize et al. Unpacking Needs 

Protection: A Single-Trace Secret Key Recovery Attack on Dilithium, IACR 

Communications in Cryptology, 2024, 1(3)

A Single-Trace Fault Injection Attack on Hedged Module Lattice Digital Signature 

Algorithm (ML-DSA), S. Jendral, J. P. Mattsson and E. Dubrova, FDTC’2024



Attack details

• Dilithium-2 C implementation (unprotected):

– Abdulrahman, A., Hwang, V., Kannwischer, M.J., Sprenkels, A., 

Faster Kyber and Dilithium on the Cortex-M4, ACNS’2022 

– Complied with optimization level -O3

• Attack point: 

– Secret key unpacking skDecode at the                                                   

first step of step of signing algorithm  

• Target board:

– ARM Cortex-M4 in CW308TSTM32F4
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C code of secret key unpacking procedure
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Called ℓ = 4 times to unpack 96 bytes of 

each of ℓ polynomials of s1 into n = 256

coefficients in the range [−η, η], η = 2

Called k = 4 times to unpack 96 bytes of 

each of k polynomials of s2 into n

coefficients in the range [−η, η]

...



C code of small_polyeta_unpack() procedure
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range [0, 2η]

(in reverse)

range [−η, η]



Power analysis

• Power consumption in a software implementation is typically 

proportional to the Hamming weight (HW) of processed data 

• The coefficients of s1 and s2 are represented as 16-bits integers 

• Negative numbers are represented in two’s complement

 -1 = 0xFFFF and -2 = 0xFFFE

• The Hamming weight of (4, 3, 2, 1, 0) is HW = (1, 2, 1, 1, 0) 

• The Hamming weight of (−2,−1, 0, 1, 2) is HW = (15, 16, 0, 1, 1)

• The pairs are unique: ((1, 15), (2, 16), (1, 0), (1, 1), (0, 1))
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Distributions of power consumption 
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Distributions of power consumption during the processing of the 1st coefficient

of s1 by small_polyeta_unpack(): (a) in the range [0, 2η], (b) in the range [−η, η]



Segment of trace of small_polyeta_unpack() 
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t0 unpackings1 unpacking s2 unpacking

eight coefficients of s1

ρ, tr and K unpacking



Time for capturing the training and test sets
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• Eight neural network models were trained

• The training time for a single model is less than 40 min

 the total profiling time is less than 10 hours



Experimental results

Table: Empirical probability to recover a single coefficient of s1, s1[j], from N traces 

(mean over all s1[j] with the same j mod 8, for j ∈ {0, 1,..., 1023})
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The compiler does not allocate store and mask

instructions in the same way as for the other coefficients

 values are manipulated less

 weaker leakage

Probability flattens 

after N = 100



Two post-processing methods

To complement power analysis, we use two methods:

1. Solving a system of linear equations induced by t = A s1 + s2 

– assumes the knowledge of t0

2. Lattice reduction

– aims to find a new basis for the same lattice but with shorter, more 

orthogonal basis vectors
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Linear algebra (LA)-based method
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1. Predict all coefficients of s1 and s2 using NN models

2. Sort by the maximum predicted probability

3. Accept as correct the top half 

4. Derive the rest by solving linear equations



Lattice reduction-based method 

1. Predict all coefficients of s1 using NN models

2. Sort by the maximum predicted probability

3. Accept as correct a top fraction x

4. Derive the rest by lattice reduction

• Block Korkin-Zolotarev (BKZ) algorithm
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BKZ blocksize

estimate of Core-SVP 

bit hardness, α ≈ 0.292β

attack takes  6 hours



Skipping SHAKE256 absorbtion by fault injection

• SHAKE256 is an eXtendable Output Function (XOF) based 

on Keccak family

• Uses sponge construction (absorbtion + squeezing)

• Used in ML-DSA to expand seeds, hash messages and 

sample matrices/vectors
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Sponge construction
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Skipping absorbtion
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Output is a constant



Key recovery from a known ´
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Summary
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• Practical side-channel and fault attacks on software 

implementations of ML-KEM and ML-DSA are possible

• Implementations protected by both masking and shuffling, 

or higher-order masking, may also be vulnerable 

• Features of lattice-based algorithms such as bit flipping and 

cyclic rotation are helpful for the attacker

• Stronger countermeasures against physical attacks on 

software implementations of ML-KEM and ML-DSA are 

needed



Thank you!
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