
Side-Channel and Fault Attacks on 
ML-KEM and ML-DSA
Elena Dubrova

School of Electrical Engineering and Computer Science

KTH Royal Institute of Technology

Stockholm, Sweden



Outline

• Background

• Public-key, secret-key and post-quantum cryptography

• Learning With Errors (LWE) problem

• ML-KEM (Kyber) and ML-DSA (Dilithium) algorithms

• Side-channel and fault attacks

• Attacks on software implementations of ML-KEM and ML-

DSA algorithms

• Summary

2PROACT 2025



PROACT 2025 3

Discrete 

Logarithm

Integer 

Factorization

Public-Key 

Cryptographic 

Algorithms

Mathematical

Problems

Depend on 

hardness of Quantum 

Computers

Can solve

Post-Quantum 

Cryptographic 

Algorithms

Mathematical

Problems

Depend on 

hardness of Cannot solve

Lattice-

based

Code-

based



When will a large-scale quantum computer be built?

”I estimate a 1/7 chance of breaking RSA-

2048 by 2026 and a 1/2 chance by 2031.”

Michele Mosca [NIST, April 2015]

https://eprint.iar.org/2015/1075 

PROACT 2025 4



PROACT 2025 5

Key 

Exchange

Shared key 

establishment

Digital 

Signature
Message 

Authentication

Data integrity

& authenticity

Non-repudiation

Data integrity

& authenticity

Encryption Encryption
Data 

confidentially

Data 

confidentially

Public-Key 

Cryptography

(Assymetric)

Secret-Key 

Cryptography

(Symmetric)

AESRSA

HMAC 

SHA-256
DSA

Diffie-Hellman



Authenticated key exchange & symmetric encryption

PROACT 2025 6

Key establishment using Diffie-HellmanShared key K Shared key K

Plaintext mCiphertext c

K

AES
Encrypt(K,m)

AES
Decrypt(K,c)

K

Plaintext m

Internet

Authentication using digital signaturesAlice’s private key skA

Bob’s public key pkB

Bob’s private key skB

Alice’s public key pkA

BobAlice



PROACT 2025 7

Key 

Encapsulation

Shared key 

establishment

Digital 

Signature

Data integrity

& authenticity

Non-repudiation

Encryption
Data 

confidentially

Post-Quantum 

Cryptography

CRYSTALS-Dilithium 

(NIST ML-DSA, 2022)

CRYSTALS-Kyber, 

(NIST ML-KEM, 2022)

CRYSTALS-Kyber, 

(NIST ML-KEM, 2022)

Both algorithms rely on 

hardness of Learning With 

Errors (LWE) problem



Learning With Errors



Learning With Errors (LWE) problem

A system of linear equations can be easily solved ...

PROACT 2025 9

sA b =

Given blue, find red



Learning With Errors (LWE) problem, cont.

PROACT 2025 10

... but not if errors (small noise) are added

Given blue, find red (search LWE problem)

sA b =e+

Given A, distinguish b from unifrmy random (decision LWE problem)

Hard even if A is over ring  𝑍𝑞 𝑋 /𝑓(𝑋) for certain 𝑓(𝑋)



Learning With Errors (LWE) problem, cont.

PROACT 2025 11

sA b =e+

Private (secret) key, 𝑠𝑘

Public key, 𝑝𝑘



Module LWE

PROACT 2025 12

=+

𝑛
ring 

dimension

𝑛  𝑘

module rank



Why ``lattice-based´´?

• Module-LWE problem can be interpreted as a version of the 

Closest Vector Problem (CVP) in a structured q-ary lattice

• This CVP instance can be solved by finding an unusually 

short vector in a related lattice

• a version of the Shortest Vector Problem (SVP)

PROACT 2025 13

All solutions to          

b = As + e mod q

form a “shifted” lattice

The goal is to find the 

point closest to the origin 



ML-KEM (CRYSTALS-Kyber)



Module Lattice Key Encapsuation Mechanism

• Security is based on the hardness of LWE in module lattices

• PKE algorithms: 𝑝𝑘 is public key

– Key generation, (𝑝𝑘, 𝑠𝑘) = PKE.KeyGen() 𝑠𝑘 is secret (private) key

– Encryption, 𝑐 = Encrypt(𝑝𝑘,𝑚, 𝑟) 𝑟 is random coin

– Decryption, 𝑚 = Decrypt(𝑠𝑘, 𝑐) 𝑚 is message

• KEM algorithms:

– Key generation, (𝑝𝑘, 𝑠𝑘) = KEM.KeyGen()

– Encapsulation, (𝑐, 𝐾) = Encaps(𝑝𝑘) 𝐾 is shared key

– Decapsualtion, 𝐾 = Decaps(𝑐, 𝑠𝑘) 

PROACT 2025 15

𝑐 is ciphertext, 𝑐 = (𝒖, 𝑣)



ML-KEM parameters

PROACT 2025 16

• 𝑍𝑞 is the ring of integers modulo a prime 𝑞 = 213 – 29 + 1

• 𝑅𝑞 is the polynomial ring  𝑍𝑞 𝑋 /(𝑋𝑛 + 1), where 𝑛 is the ring 
dimension

• ML-KEM works with vectors of ring elements in 𝑅𝑞
𝑘, where k is the 

rank of the module defining the security level

• Inputs and outputs to all API functions of ML-KEM are byte arrays



Key generation algorithm

PROACT 2025 17

Output: public key 𝑝𝑘, secret key 𝑠𝑘

gen(A)
A

s e

+ b = As + e 

𝑝𝑘 = (A, b)

𝑠𝑘 = s



gen(s) gen(e)
Sampled from a 

uniform distribution 

Sampled from a centered binomial 

distribution with parameter μ1



Encryption algorithm

PROACT 2025 18

Input: public key 𝑝𝑘 = (A, b), message m

Output: ciphertext c = (𝒖, v)

A

gen(s)

s’ e’

+ 𝒖 = As’ + e’ 

b + v = bs’ + e’’ + encode(m) 

s’ e’’

m: (0,1,1,0, …)

encode

+

(multiply by q/2)gen(e)

encode(m) = (0,q/2,q/2,0, …)





Encode converts a 

binary message m into 

a polynomial with 

coefficients q/2  m[j], 

where m[j] is jth bit of m
Sampled 

from Bμ1

Sampled 

from Bμ2



small

Decryption algorithm

PROACT 2025 19

Input: ciphertext c = (𝒖, v), secret key 𝑠𝑘 = s

Output: message m

𝒖
-

s v

decode

b = As + e 

𝒖 = As’ + e’ 

v = bs’ + e’’ + encode(m) 

v – 𝒖 s

0

q/2

0

1

m

= encode(m) + (es’ + e’’ + e’s)





Encapsulation algorithm

PROACT 2025 20

Encrypt

G KDF

c

K
K

r

m

𝑝𝑘

H𝑝𝑘

Gen(m)

H

Input: public key 𝑝𝑘

Output: ciphertext c, shared key K

Sampled from 

uniform distribution 

SHA3-256 

hash function

SHA3-512 

hash function

SHAKE-256 

hash function



Decapsulation algorithm

PROACT 2025 21

A version of Fujisaki-Okamoto (FO) transform is used to create an IND-CCA2 

secure KEM from an IND-CPA secure PKE

IND-CPA = Indistinguishability against chosen-plaintext attacks

IND-CCA2 = Indistinguishability against adaptive chosen-ciphertext attacks

Decrypt

Encrypt

G

H

KDF

=

c

c

z K

K

r

m
1

0

𝑝𝑘

𝑠𝑘

H𝑝𝑘
Input: c, 𝑠𝑘

Output: K



IND-CPA and IND-CCA2

• IND-CPA means that one cannot distinguish two ciphertexts 

based on the messages they encrypt

– Basic requirement for most provably secure PKE schemes

• IND-CCA2 means that one cannot improve the guess by 

allowing the use of a decryption oracle that can decrypt any 

ciphertexts except the given ones

PROACT 2025 22



Shared key establishment protocol

PROACT 2025 23

𝑝𝑘, 𝑠𝑘 = KEM.KeyGen()
𝑝𝑘

𝑐

𝑐 = Encrypt(𝑝𝑘,𝑚, 𝑟)

𝑚 ← 𝒰( 0,1 256)

Encaps(𝑝𝑘)

ത𝐾, 𝑟 = 𝒢(𝑚,ℋ(𝑝𝑘))

𝐾 = KDF( ത𝐾,ℋ(𝑐))

Party 1 Party 2

Decaps(𝑠𝑘 = ((𝐬, 𝑝𝑘,ℋ 𝑝𝑘 , 𝑧), 𝑐)

𝑚′= Decrypt(𝐬, 𝑐)

𝐾 = KDF( ത𝐾′,ℋ(𝑐))

ത𝐾′, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))

𝑐′ = Encrypt(𝑝𝑘,𝑚′, 𝑟′)
if 𝑐 = 𝑐′: 

else
𝐾 = KDF(𝑧,ℋ(𝑐))



ML-DSA (CRYSTALS-Dilithium)



Module Lattice Digital Signature Scheme

Security is based on the hardness of LWE in module lattices and a 

version of the module short integer solution (M-SIS) problem

𝑝𝑘 is public key

• Key generation, (𝑝𝑘, 𝑠𝑘) = KeyGen() 𝑠𝑘 is secret key

• Signing,  = Sign(s𝑘,𝑚)  is signature

• Verification, Verify(𝑝𝑘,𝑚,)            𝑚 is message

• Inputs and outputs to all API functions are byte arrays (as in Kyber)

 unpacking of the byte arrays into the polynomial coefficients and vice 

versa must be performed

PROACT 2025 25



ML-DSA parameters

PROACT 2025 26

prime 𝑞 = 233 – 213 + 1



ML-DSA key generation algorithm (simplified)

PROACT 2025 27

Output: public key 𝑝𝑘, secret key 𝑠𝑘

...

...

b = As + e  in ML-KEM 

𝑝𝑘 = (A, b)

𝑠𝑘 = s

Drops d low-order 

bits of each 

coefficient of t

Packing into 

byte arrays



ML-DSA signing algorithm (simplified)

PROACT 2025 28

Input: secret key 𝑠𝑘, message m
Output: signature 

Unpacking of 

byte arrays

...

m

...

...

Many side-channel 

attacks target this point



Authentication protocol

PROACT 2025 29

𝑝𝑘, 𝑠𝑘 = KeyGen() 𝑝𝑘

Party 1 Party 2

m,
Sign(𝑠𝑘,𝑚) Verify(𝑝𝑘,𝑚,)



Side-channel and fault attacks



What is a physical attack?

PROACT 2025 31

Conventional 

cryptanalysis
Mathematical 

algorithm
TARGETS

Side-channel & 

fault attacks

Physical 

device

Side-channel information

Cryptosystem
Input Output

Fault injection

TARGET



Side-Channel Analysis (SCA)

PROACT 2025 32

photo credit: Martin Brisfors

• Algorithms are implemented in MCUs, CPUs, FPGAs, ASICs,…

• Different operations may consume different amount of 
power/time

• The same operation executed                                                     
on different data may consume                                                    
different amount of power/time

• It may be possible to recognize                                              
which operations and data are                                        
processed from power/time  

• ML techniques are useful  

ChipWhisperer-Lite



Fault Injection (FI)

PROACT 2025 33

• Clock glitching:

– Inject/withhold rising edge in clock 

signal

• Voltage glitching:

– Short power supply

ChipWhisperer-Husky

• Inexpensive ($550), easy to use

• Requires precise timing

photo credit: Sönke Jenral



Voltage glitching parameters

PROACT 2025 34



SCA example of AES-128 on 32-bit MCU 

1 2 3 4 5 6 7 8 9 10

block 1 block 2picture credit: Ruize Wang

PROACT 2025 35



How Deep Learning (DL) helps?

PROACT 2025 36

Profiling stage: Train a neural network using traces from 

profiling devices 

Random 

plaintexts

Training set Neural network

Label = 2

Label = 0

Label = 1

Label = 255

Label = 254

Label = 253

...

Profiling 

device



How Deep Learning (DL) helps?

PROACT 2025 37

Attack stage: Use the trained network to classify traces from 

the device under attack

Random 

plaintexts

Test traces Trained networkDevice 

under 

attack

Label = 2

Label = 0

Label = 1

Label = 255

Label = 254

Label = 253

...

σ𝑝𝑖 = 1

0.01

0.05

0.68

0.10

0.03

0.02



Attack scenario for ML-KEM

PROACT 2025 38

𝑝𝑘, 𝑠𝑘 = KEM.KeyGen() 𝑝𝑘

𝑐
𝑐 = Encrypt(𝑝𝑘,𝑚, 𝑟)

𝑚 ← 𝒰( 0,1 256)

Encaps(𝑝𝑘)

ത𝐾, 𝑟 = 𝒢(𝑚,ℋ(𝑝𝑘))

𝐾 = KDF( ത𝐾,ℋ(𝑐))

Party 1 Party 2

Decaps(𝑠𝑘 = ((𝐬, 𝑝𝑘,ℋ 𝑝𝑘 , 𝑧), 𝑐)

𝑚′= Decrypt(𝐬, 𝑐)

𝐾 = KDF( ത𝐾′,ℋ(𝑐))

ത𝐾′, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))

𝑐′ = Encrypt(𝑝𝑘,𝑚′, 𝑟′)
if 𝑐 = 𝑐′: 

else
𝐾 = KDF(𝑧,ℋ(𝑐))



PROACT 2025 39

ℳ = TrainModel(𝑇𝑝, 𝑚𝑝)

𝑇𝑝 ↜ Decaps(𝑠𝑘𝑝, 𝑐𝑝)

𝑝𝑘𝑝, 𝑠𝑘𝑝 = KeyGen()

𝑚𝑝 ← 𝒰( 0,1 256)

𝑐𝑝= Encrypt(𝑝𝑘𝑝, 𝑚𝑝, 𝑟𝑝)

Profiling stage

Party 1 Party 2

𝑝𝑘, 𝑠𝑘 = KeyGen()

K = Decaps(𝑠𝑘, 𝑐)
𝑇

𝑚′=ℳ 𝑇

𝑝𝑘

𝑐
𝑐

𝑝𝑘

Attack stage for 
shared key recovery

(𝑐,K ) = Encaps(𝑝𝑘)

𝐾 = KDF( ത𝐾′,ℋ(𝑐))

ത𝐾′, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))

𝐾1 = Decaps(𝑠𝑘, 𝑐1)
𝑇1, 𝑇2, …

𝑚1 =ℳ(𝑇1)

𝑐1, 𝑐2,…

Attack stage for 
secret key recovery

𝐾2 = Decaps(𝑠𝑘, 𝑐2)
…

𝑚2 =ℳ(𝑇2)…
𝑠𝑘 = RecoverKey(𝑚1, 𝑚2, … )

If 𝑚 is used as a 

label, profiling 

traces can be 

captured from the 

device under attack 

since 𝑝𝑘 is used to 

compute 𝑐



Attack scenario for ML-DSA

PROACT 2025 40

𝑝𝑘, 𝑠𝑘 = KeyGen()
𝑝𝑘

Party 1 Party 2

Verify(𝑝𝑘,𝑚,)
𝑚,

Sign(𝑠𝑘,𝑚)



PROACT 2025 41

ℳ = TrainModel(𝑇𝑝, 𝑠𝑘𝑝)

𝑇𝑝 ↜ Sign(𝑠𝑘𝑝, 𝑚𝑝)

𝑝𝑘𝑝, 𝑠𝑘𝑝 = KeyGen()

Profiling stage

Party 1 Party 2

Since 𝑠𝑘 is used as 

labels, traces for 

profining cannot be 

captured from the 

device under attack

𝑇

Attack stage for 
secret key recovery

𝑠𝑘′ = ℳ(𝑇)

𝑝𝑘, 𝑠𝑘 = KeyGen()
𝑝𝑘 𝑝𝑘

𝑚,
Sign(𝑠𝑘,𝑚)

𝑚,

𝑠𝑘 = RecoverKey(𝑠𝑘′)



Countermeasures



Masking and shuffling countermeasures

PROACT 2025 43

1 1 1 1 0 0 0 0

0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1

Secret 

Random mask

changed at each 

execution

Secret  Random mask

``´´ is bitwise XOR

1 1 1 1 0 0 0 0

Secret 

0 0 1 0 1 0 1 1

Secret permuted

First-order Boolean masking

share 1 share 2

Shuffling



How DL helps break masking

PROACT 2025 44

Messages m 

generated at 

random 

Ciphertexts 

c = Encrypt(pk,m) 

Training

traces

m[j] = 1

......
...

Labels = 

jth bit of m
Model Nj

PROFILING STAGE

m[j] = 0

m[j] = 0

r[j]m[j]r[j]

Device under 

attack

Test traces

σ𝑝 = 1

p[m[j]=0] 

p[m[j]=1] 

...
...

jth bit of  m = 

Decrypt(sk,c) 

Model Nj

ATTACK STAGE

Ciphertext 

c

r[j]m[j]r[j]

Device under 

attack

A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM Implementation, 

K. Ngo, E. Dubrova, Q. Guo, T. Johansson, TCHES’2021(4), 676-707



Attacks on ML-KEM and ML-DSA

45



Six attacks on software implementations

• ML-KEM:

• DL-SCA on an unmasked implementation

• DL-SCA on a first-order masked & shuffled implementation

• FI attack on a first-order masked & shuffled implementation

• DL-SCA on a higher-order masked implementation

• ML-DSA

• DL-SCA on an unmasked implementation

• FI attack on an unmasked implementation

PROACT 2025 46



Secret key recovery attack on unmasked 

Kyber using k chosen ciphertexts

A Side-Channel Secret Key Recovery Attack on CRYSTALS-Kyber 

Using k Chosen Ciphertexts, R. Wang, E. Dubrova, C2SI’2023



Attack details 

• Kyber-768 C implementation: 

• Kannwischer, M.J., Petri, R., Rijneveld, J., Schwabe, P., Stoffelen, K.: 

PQM4: Post-quantum crypto library for the ARM Cortex-M4, 

https://github.com/mupq/pqm4 

• Complied with optimization level -O3

• Attack point: 

– Decryption step of decapsulation

• message decoding and polynomial                                                

reduction procedures

• Target board:

– ARM Cortex-M4 in CW308TSTM32F4

PROACT 2025 48

photo credit: Ruize Wang



Message decoding and polynomial reduction 
procedures

PROACT 2025 49



Power trace of poly_reduce() and poly_tomsg()

PROACT 2025 50

8 message bits

16 polynomial coefficients



Leakage analysis of poly_ tomsg() 

PROACT 2025 51

(a) Power trace of poly_tomsg(); (b) T-test for 8 message bits (100K traces)

m[i] = 0 

vs 

m[i] = 1



Leakage analysis of poly_ reduce() 

PROACT 2025 52

(a) Power trace of poly_reduce(): (b,c,d) T-test for 16 poly. coeff. (100K traces)

HW(input) = 0 vs 

HW(input) = 11

HW(tmp) = 0 vs 

HW(tmp) = 13

HW(output) = 0 vs 

HW(output) = 6



Distributions of power consumption for 
different intermediate variables

PROACT 2025 53

P
ro

b
a

b
ili

ty
 m

a
s
s

P
ro

b
a

b
ili

ty
 m

a
s
s



Chosen ciphertext construction method

The secret key 𝒔 consists three polynomials 𝒔 = (𝑠0, 𝑠1, 𝑠2)

The ciphertext 𝑐 = 𝒖, 𝑣 consists of 𝒖 = (𝑢0, 𝑢1, 𝑢2) and 𝑣

To recover n coefficients of 𝑠𝑖, we set:

Then, for 𝑖 ∈ 0,1,2 , 𝑚 𝑗 is a function of the tuple 𝑘0, 𝑘1, 𝑠𝑖 𝑗 :

PROACT 2025 54

𝑘0− 𝑘1𝑠𝑖 𝑗 𝑥𝑗𝑇



Chosen ciphertext construction, cont.

Search through all possible 𝑘0, 𝑘1 ∈ 𝑍𝑞 to construct 𝑐 = 𝒖, 𝑣

such that:

1. The number of different HWs of poly_reduce() intermediate 

variables is minimized

2. Hamming distances between poly_reduce() intermediate 

variables are maximized

3. There are both 0 and 1 message bits in poly_tomsg()

4. Given 1-3, all five key coefficients are uniquely defined

PROACT 2025 55



Mapping of intermediate values into secret key 
coefficients for k0 = 0 and k1 = 1369

PROACT 2025 56



Mapping of MLP’s labels into secret key 
coefficients for k0 = 0 and k1 = 1369

PROACT 2025 57



Empirical secret key recovery results 
(mean for 100 different secret keys)

PROACT 2025 58

N  k

For profiling device                   For device under attack

Single 

coefficient

Full 

key

Max

# enum.

Single 

coefficient

Full 

key

Max

# enum.

1  3 0.9990 0.47 58 0.9940 0.02 516

10  3 0.9997 0.81 53 0.9990 0.43 54

20  3 0.9997 0.81 53 0.9991 0.45 53

50  3 0.9997 0.81 52 0.9994 0.53 52

100  3 0.9997 0.81 52 0.9994 0.53 52



Number of chosen ciphertexts required for 
Kyber-768 secret key recovery

PROACT 2025 59



Secret key recovery attacks on a 

masked and shuffled ML-KEM

Secret Key Recovery Attack on Masked and Shuffled Implementations of 

CRYSTALS-Kyber and Saber, L. Backlund, K. Ngo, J. Gärtner, E. 

Dubrova, in ACNS Workshops, 2023

Breaking SCA-Protected CRYSTALS-Kyber with a Single Trace, S. 

Jendral, K. Ngo, R. Wang, E. Dubrova, HOST’2024



Attack details

• Kyber-768 C implementation (with shuffling added): 

• Heinz, D.,Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, 

P., Sprenkels: First-order masked Kyber on ARM Cortex-M4. 

Cryptology ePrint Archive, Report 2022/058

• Complied with optimization level -O3

• Attack point: 

– Decryption step of decapsulation  

• message decoding  

• Fisher-Yates index generation and usage

• Target board:

– ARM Cortex-M4 in CW308TSTM32F4

PROACT 2025 61

photo credit: Linus Backlund



Message recovery for a shuffled implementation

PROACT 2025 62

1 0 1 0 1

0 1 2 3 4Index

m
1 0 1 0 1

4 3 1 0 2
Permuted

index

m

Individual message bits can be recovered, but their order is unknown



Previous approaches based on bit flipping

PROACT 2025 63

1 0 1 0 1m

0 0 1 0 1m'

HW(m) = 3

HW(m') = 2

m[0] = 1

Ravi, P., Bhasin, S., Roy, S., Chattopadhyay, A., On exploiting message leakage in 

(few) NIST PQC candidates for practical message recovery and key recovery 

attacks, https://eprint.iacr.org/2020/1559.pdf

Ngo, K., Dubrova, E., Johansson, T., Breaking masked and shuffled CCA secure

Saber KEM by power analysis, ASHES’2021



Fisher-Yates (FY) index usage

PROACT 2025 64

T-test on 5K traces



FY index generation

PROACT 2025 65

T-test on 5K traces



Distributions of power consumption for FY 
index generation

PROACT 2025 66

P
ro

b
a
b
ili

ty
 m

a
s
s

Only FY indexes with HW = 0 and 8 can be distinguished with a high 

probablitiy (from a single trace)

Solution: Recover message bits with these indexes only & rotate cyclically



The maximum number of traces required for 
secret key recovery in all 10 attacks

PROACT 2025 67

Algorithm Code distance

8 6 4

Saber ASHES’21 bit flipping method - - 61680

Saber FY index recovery method - 4608 9216

Kyber FY index recovery method 48384 38016 59136

13 times 

smaller



Skipping shuffling with a fault injection

PROACT 2025 68

Initialization

Shuffling

Voltage glitch injection

(0.89 success rate)

FY index generation



Message recovery attack on a higher-

order masked ML-KEM

Breaking a Fifth-Order Masked Implementation of

CRYSTALS-Kyber by Copy-Paste, E. Dubrova, K. Ngo, J. Gärtner 

R. Wang, RWC’23, APKC’23



Attack details

• Kyber-768 C implementation (extended to higher orders):

• Heinz, D.,Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, 

P., Sprenkels: First-order masked Kyber on ARM Cortex-M4. 

Cryptology ePrint Archive, Report 2022/058 (2022)

• Complied with optimization level -O3

• Attack point: 

– Re-encryption step of decapsulation  

• message encoding  

• Target board:

– ARM Cortex-M4 in CW308TSTM32F4

PROACT 2025 70

photo credit: Kalle Ngo



Non-masked message encoding in Kyber 
implementation of Kannwischer et al. 

PROACT 2025 71

Mask takes values 0x0000 or 0xFFFF

Large difference in Hamming weight  easy to distinguish

First described by Amiet et al. for NewHope KEM, ICPQC’2020

/* bit extraction */



Distributions of power consumption for 
message bits

PROACT 2025 72

Non-overlapping distributions   easy to distinguish

P
ro

b
a
b
ili

ty
 m

a
s
s



Masked message encoding in Kyber 
implementation on Heinz et al. 

PROACT 2025 73

/* Boolean share 0 bit extraction */

/* Boolean share 1 bit extraction */



Segment of power trace of re-encryption in 
Kyber implementation on Heinz et al. 

PROACT 2025 74

32 bytes of share 1 32 bytes of share 2

masked_poly_frommsg()masked_poly_addnoise()

byte



More shares  more 32-byte blocks

PROACT 2025 75

3

4

5

6



Copy-paste method

PROACT 2025 76

Power traces 

(cut & concatenated 

ith bits of shares)

G
a
m

m
a
 p

a
ra

m
e
te

r

share 1 share 2 share 3 share 4 share 5
A

D
C

 m
e
a
s
u
rm

e
n
t

share 1 share 2 share 3 share 4 share 5 share 6

A
D

C
 m

e
a
s
u
rm

e
n
t

G
a
m

m
a
 p

a
ra

m
e
te

r

Weights of MLP 

BatchNorm.1 layer

after training

G
a
m

m
a
 p

a
ra

m
e
te

r

1) Copy/paste

3) Train

Weights of MLP 

BatchNorm.1 layer 

after trainingbefore training

2) Extend



Attack results for the first-order masking

PROACT 2025 77

Attack 

type

Mean empirical probability to recover ith message bit
Avg.

0 1 2 3 4 5 6 7

Single-

trace
0.9992 0.9989 0.9953 0.9841 0.9876 0.9835 0.9393 0.9067 0.9743

With 4 

rotations
0.9994 0.9991 0.9993 0.9990 0.9988 0.9885 0.9993 0.9992 0.9991



20-trace attack results for 5-order masking
(with 4 negacyclic rotations and 5 repetitions)

PROACT 2025 78

ω Mean empirical probability to recover ith message bit
Avg.

0 1 2 3 4 5 6 7

5 1.0000 0.9987 1.0000 0.9989 1.0000 0.9992 1.0000 0.9988 0.9995

ω 5

pmesage 0.8709

Since ranom masks are updated at each execution,

errors in repeated measurments are more 

independent than in the non-masked case



Secret Key Recovery Attacks on ML-DSA

Ruize Wang, Kalle Ngo, Joel Gärtner, Elena Dubrova, Ruize et al. Unpacking Needs 

Protection: A Single-Trace Secret Key Recovery Attack on Dilithium, IACR 

Communications in Cryptology, 2024, 1(3)

A Single-Trace Fault Injection Attack on Hedged Module Lattice Digital Signature 

Algorithm (ML-DSA), S. Jendral, J. P. Mattsson and E. Dubrova, FDTC’2024



Attack details

• Dilithium-2 C implementation (unprotected):

– Abdulrahman, A., Hwang, V., Kannwischer, M.J., Sprenkels, A., 

Faster Kyber and Dilithium on the Cortex-M4, ACNS’2022 

– Complied with optimization level -O3

• Attack point: 

– Secret key unpacking skDecode at the                                                   

first step of step of signing algorithm  

• Target board:

– ARM Cortex-M4 in CW308TSTM32F4

PROACT 2025 80

photo credit: Kalle Ngo



C code of secret key unpacking procedure

PROACT 2025 81

Called ℓ = 4 times to unpack 96 bytes of 

each of ℓ polynomials of s1 into n = 256

coefficients in the range [−η, η], η = 2

Called k = 4 times to unpack 96 bytes of 

each of k polynomials of s2 into n

coefficients in the range [−η, η]

...



C code of small_polyeta_unpack() procedure

PROACT 2025 82

range [0, 2η]

(in reverse)

range [−η, η]



Power analysis

• Power consumption in a software implementation is typically 

proportional to the Hamming weight (HW) of processed data 

• The coefficients of s1 and s2 are represented as 16-bits integers 

• Negative numbers are represented in two’s complement

 -1 = 0xFFFF and -2 = 0xFFFE

• The Hamming weight of (4, 3, 2, 1, 0) is HW = (1, 2, 1, 1, 0) 

• The Hamming weight of (−2,−1, 0, 1, 2) is HW = (15, 16, 0, 1, 1)

• The pairs are unique: ((1, 15), (2, 16), (1, 0), (1, 1), (0, 1))

PROACT 2025 83



Distributions of power consumption 

PROACT 2025 84

Distributions of power consumption during the processing of the 1st coefficient

of s1 by small_polyeta_unpack(): (a) in the range [0, 2η], (b) in the range [−η, η]



Segment of trace of small_polyeta_unpack() 

PROACT 2025 85

t0 unpackings1 unpacking s2 unpacking

eight coefficients of s1

ρ, tr and K unpacking



Time for capturing the training and test sets

PROACT 2025 86

• Eight neural network models were trained

• The training time for a single model is less than 40 min

 the total profiling time is less than 10 hours



Experimental results

Table: Empirical probability to recover a single coefficient of s1, s1[j], from N traces 

(mean over all s1[j] with the same j mod 8, for j ∈ {0, 1,..., 1023})

PROACT 2025 87

The compiler does not allocate store and mask

instructions in the same way as for the other coefficients

 values are manipulated less

 weaker leakage

Probability flattens 

after N = 100



Two post-processing methods

To complement power analysis, we use two methods:

1. Solving a system of linear equations induced by t = A s1 + s2 

– assumes the knowledge of t0

2. Lattice reduction

– aims to find a new basis for the same lattice but with shorter, more 

orthogonal basis vectors

PROACT 2025 88



Linear algebra (LA)-based method

PROACT 2025 89

1. Predict all coefficients of s1 and s2 using NN models

2. Sort by the maximum predicted probability

3. Accept as correct the top half 

4. Derive the rest by solving linear equations



Lattice reduction-based method 

1. Predict all coefficients of s1 using NN models

2. Sort by the maximum predicted probability

3. Accept as correct a top fraction x

4. Derive the rest by lattice reduction

• Block Korkin-Zolotarev (BKZ) algorithm

PROACT 2025 90

BKZ blocksize

estimate of Core-SVP 

bit hardness, α ≈ 0.292β

attack takes  6 hours



Skipping SHAKE256 absorbtion by fault injection

• SHAKE256 is an eXtendable Output Function (XOF) based 

on Keccak family

• Uses sponge construction (absorbtion + squeezing)

• Used in ML-DSA to expand seeds, hash messages and 

sample matrices/vectors

PROACT 2025 91



Sponge construction

PROACT 2025 92



Skipping absorbtion

PROACT 2025 93

Output is a constant



Key recovery from a known ´

PROACT 2025 94



Summary

PROACT 2025 95

• Practical side-channel and fault attacks on software 

implementations of ML-KEM and ML-DSA are possible

• Implementations protected by both masking and shuffling, 

or higher-order masking, may also be vulnerable 

• Features of lattice-based algorithms such as bit flipping and 

cyclic rotation are helpful for the attacker

• Stronger countermeasures against physical attacks on 

software implementations of ML-KEM and ML-DSA are 

needed



Thank you!

96


