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Outline

« Background
* Public-key, secret-key and post-quantum cryptography
* Learning With Errors (LWE) problem
 ML-KEM (Kyber) and ML-DSA (Dilithium) algorithms
« Side-channel and fault attacks

 Attacks on software implementations of ML-KEM and ML-
DSA algorithms

 Summary
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When will a large-scale quantum computer be built?

"| estimate a 1/7 chance of breaking RSA-
2048 by 2026 and a 1/2 chance by 2031.”

Michele Mosca [NIST, April 2015]
https://eprint.iar.org/2015/1075
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Authenticated key exchange & symmetric encryption
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Both algorithms rely on
hardness of Learning With
Errors (LWE) problem

CRYSTALS-Kyb¢r,
(NIST ML-KEM, 2022)

CRYSTALS-Dilithium
(NIST ML-DSA, 2022)

CRYSTALS-Kyber,
(NIST ML-KEM, 2022)




Learning With Errors




Learning With Errors (LWE) problem

A system of linear equations can be easily solved ...

XH

Given blue, find red
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Learning With Errors (LWE) problem, cont.

... but not if errors (small noise) are added

x+

Given blue, find red (search LWE problem)

Given A, distinguish b from unifrmy random (decision LWE problem)
Hard even if Ais over ring Z [X]/f(X) for certain f(X)
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Learning With Errors (LWE) problem, cont.

Private (secret) key, sk

/
x+ :
\/’

Public key, pk

PROACT 2025




Module LWE
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Why lattice-based”"?

« Module-LWE problem can be interpreted as a version of the
Closest Vector Problem (CVP) in a structured g-ary lattice

« This CVP instance can be solved by finding an unusually
short vector in a related lattice

« a version of the Shortest Vector Problem (SVP)

All solutions to

.. : } ° . . b=As+emodq
. AR ° ° form a “shifted” lattice
. ... ® ..U The goal is to find the
. . o . . . point closest to the origin
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ML-KEM (CRYSTALS-Kyber)




Module Lattice Key Encapsuation Mechanism

Security Is based on the hardness of LWE in module lattices

PKE algorithms:

Key generation, (pk, sk) = PKE.KeyGen()
Encryption, ¢ = Encrypt(pk, m, )
Decryption, m = Decrypt(sk, c)

KEM algorithms:

Key generation, (pk, sk) = KEM.KeyGen()
Encapsulation, (c, K) = Encaps(pk)
Decapsualtion, K = Decaps(c, sk)
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> pk is public key

> sk is secret (private) key
> ris random coin

> mis message

> cis ciphertext, c = (u,v)

> K is shared key




ML-KEM parameters

n q m n2 (dydy)

k

KYBER512 256 2 3329 3 2 (10, 4)
3
4

KYBER768 256
KYBER1024 256

3329 2 2 (10,4)

3320 2 2 (11, 5)

/S is the ring of integers modulo a prime g =213 — 29 + 1

* R, IS thg polynomial ring Z,|X]/(Xn + 1), where n is the ring
dimension

- ML-KEM works with vectors of ring elements in R%, where k is the
rank of the module defining the security level

* Inputs and outputs to all API functions of ML-KEM are byte arrays
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Key generation algorithm

Output: public key pk, secret key sk

A
gen(A) ——— X —(+ —— b=As+e

/ S [ e i
k = (A,
Sampled from a pk _ ( )
uniform distribution gen(s) gen(e) SK =S

NS

Sampled from a centered binomial
distribution with parameter p;
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Encryption algorithm

Input: public key pk = (A, b), message m

Output: ciphertext ¢ = (u, v) Encode converts a
binary message m into
a polynomial with

A — X + u=As +¢’ =
coefficients Lq/2 |- m[j],
S’ e’ m: (0,1,1,0, ...)  where m[j] is j% bit of m
Sampled |
from By, ™

gen(s) gen(e) . encode (multiply by g/2)
ls’ l g” Sampled l encode(m) = (0,9/2,9/2,0, ...)

from By,
+ >+ —— v=Dbs’'+e"” +encode(m)

b —— (%
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Decryption algorithm

Input: ciphertext ¢ = (u, v), secret key sk = s

Output: message m 0
—>O
S \Y; !
l l q/2
u _
— (X — (- v-us > decode — — m

=encode(m) + (es'+ e” + €'s) bh=As+e

v =Dbs’ + e” + encode(m)
u=As +¢

small
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Input: public key pk

Encapsulation algorithm

Output: ciphertext c, shared key K SHA3-256
hash function
SHA3-512 " o
pk—> ;sh function[
m K
Gen(m) »| KDF — K
r
/ , ™ SHAKE-256
Sampled from Encrypt > C hash function
uniform distribution T
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- b
Input: c, sk
pk— H
Output: K )
m—— K’ 2
C Decrypt G / ; ; KDF [+ K
i | — —r’
sk c’
Encrypt = J
N

A version of Fujisaki-Okamoto (FO) transform is used to create an IND-CCAZ2
secure KEM from an IND-CPA secure PKE

IND-CPA = Indistinguishability against chosen-plaintext attacks
IND-CCAZ2 = Indistinguishability against adaptive chosen-ciphertext attacks
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IND-CPA and IND-CCAZ2

« IND-CPA means that one cannot distinguish two ciphertexts
based on the messages they encrypt
— Basic requirement for most provably secure PKE schemes

« IND-CCA2 means that one cannot improve the guess by
allowing the use of a decryption oracle that can decrypt any
ciphertexts except the given ones
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Party 1

(pk, sk) = KEM.KeyGen()

Shared key establishment protocol

Party 2

Decaps(sk = ((s, pk, H (pk), ), c)
m'= Decrypt(s, ¢)

A 4

(K',7") = G(m', H (pk))
c' = Encrypt(pk, m',r")
if c = ¢

K = KDF(K', % (c))
else

K = KDF(z,  (¢))
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Encaps(pk)

m « U({0,1}2°9)

(K, 1) = G(m,H (pk))
¢ = Encrypt(pk, m,r)
K = KDF(K, H (¢c))




ML-DSA (CRYSTALS-Dilithium)




Module Lattice Digital Signature Scheme

Security is based on the hardness of LWE in module lattices and a
version of the module short integer solution (M-SIS) problem

pk is public key
« Key generation, (pk, sk) = KeyGen() sk is secret key
« Signing, o = Sign(sk, m) o is signature
« Verification, Verify(pk, m,o) m is message

» |nputs and outputs to all API functions are byte arrays (as in Kyber)

— unpacking of the byte arrays into the polynomial coefficients and vice
versa must be performed
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ML-DSA parameters

Version n q (k,2)
Dilithium-2 256 8380417 | (4. 4)
Dilithium-3 256 8380417 (6. 5)

(8, 7)

Y2 3 w
13 | 217 | (g—1)/88 78 80

Mo | S

- Q.
-2
—

4] 13 | 2¥9 | (¢—1)/32 | 196 | 55
Dilithium-5 | 256 | 8380417 | (8.7) | 2 | 13 | 2 | (¢—1)/32 | 120 | 75

/

prime q = 233 — 213 + 1
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ML-DSA key generation algorithm (simplified)

Output: public key pk, secret key sk
KeyGen()

3: A € R = ExpandA(p)
4: (81,82) € S} x Sy = ExpandS(p')

Drops d low-order

bits of each \ 5:/t = Asy + 52 ) b=As +e in ML-KEM
coefficientof t ™ 6: (tl,to) = Power2Round(t, d) pk = (A, b)
sk =s

Packing into<8: pk = pkEncode(p, t1)
byte arrays 9: sk = skEncode(p, K, tr,s1,s2,t)
10: return (pk, sk)
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ML-DSA signing algorithm (simplified)

Input: secret key sk, message m
Output: signature o

Sign(sk, m) Unpacking of
1: (p, K,tr,sq,82,t9) = skDecode(sk) " byte arrays
2: A € R = ExpandA(p)
6: while (z,h) =1 do

Many side-channel

' / attacks target this point
12: Z =Y + CSq

19: return o = (¢, z, h)
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Authentication protocol

Party 1 Party 2
(pk, sk) = KeyGen() pk
m,o
Sign(sk, m) » Verify(pk, m, o)
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Side-channel and fault attacks




What is a physical attack?

Conventional Mathematical
cryptanalysis TARGETS algorithm
Cryptosystem
Input ——— : ——> Output
Fault injection Side-channel information
Side-channel & Physical

TARGET :
fault attacks device
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Side-Channel Analysis (SCA)

Algorithms are implemented in MCUs, CPUs, FPGAs, ASICs,...

Different operations may consume different amount of
power/time

The same operation executed T
on different data may consume R
different amount of power/time N

It may be possible to recognize
which operations and data are
processed from power/time

« ML techniques are useful

com | e

Sysmo
Systems for.

photo credit: Martin Brisfors

ChipWhisperer-Lite
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Fault Injection (FI)

* Clock glitching:
— Inject/withhold rising edge in clock
signal

* Voltage glitching:
— Short power supply

sy -~

ChipWhisperer-Husky
* Inexpensive ($550), easy to use e
« Requires precise timing -4 g 32

photo credit: Sénke Jenral
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Voltage glitching parameters

Device
clock

Glitched Trigger offset
voltage | ;

|
|
|
- s . __,

ext ovffset wiath
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s

&%

{5 SCA example of AES-128 on 32-bit MCU

TN

Capture
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picture credit: Ruize Wang block 1 : Sample Number
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How Deep Learning (DL) helps?

Profiling stage: Train a neural network using traces from
profiling devices

Training set

Profiling ||/

device llnnnlﬁ'w,l".wnw}w

Random i
plaintexts lwf " |..|M”|| il
a mw i

i

Neural network
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How Deep Learning (DL) helps?

Attack stage: Use the trained network to classify traces from
the device under attack

Testtraces Trained network

Device
under n”um‘ ||u” "|"‘”‘"¢ ““"n i 0.01
‘ ” I \
attack o 005
"M '“l\ \' "N‘u ‘u1'\l Tl
\I‘\ LA
RandOm |‘|”|M ||” ‘| "|w”\l“|1'°u"“ |“‘ ‘ 0.68 C
. ( 5 \ | sna
plaintexts e 0.10
‘\Ih\ \ ‘“TI' ‘\'“I‘ I\”I‘ VI W,
Q \W\h\ I"i'|"|"|1|'“|ﬂll'T ‘"Lﬂ| 0.03
| |

l | 0.02
HIM ‘\"“a‘ "‘w' W\ ||M w"w”|
2p =1

|\Im “' I ”V' I\ L.
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Attack scenario for ML-KEM

Party 1 Party 2

(pk, sk) = KEM.KeyGen() * Encaps(ph)
m « U{0,1}%°9)

(K,7) = G(m, H (pk))
¢ = Encrypt(pk, m,r)

Decaps(sk = ((s, pk, H (pk), 2), ¢) ¢ | K=KDF(K,#(c))
m'= Decrypt(s,c)
(R',7) = Gm', 7 (P)) W
¢’ = Encrypt(pk, m',r") %
if c=c":

K = KDF(K',H (¢))
else
K = KDF(z, H (c))
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Party 1

(pk, sk) = KeyGen()

K= Decaps(sk, c)

K, = Decaps(sk, c;)
K, = Decaps(sk, c¢,)
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Party 2

(pkp,skp) = KeyGen()
my, < U{0,1}256

cp= Encrypt(pk,, my, 1)
T, ~ Decaps(sky, ¢;)

M = TrainModel(T,, my)

m'= M (T)
(K',v") = G(m', H (pk))
K = KDF(K',H (¢))

my =M (Ty)
mj f_M(Tz)

sk = RecoverKey(mq,my, ...)

If mis used as a
label, profiling
traces can be
captured from the
device under attack
since pk is used to
compute ¢

(c,K) = Encaps(pk)

Profiling stage
Attack stage for
shared key recovery

Attack stage for
secret key recovery




Attack scenario for ML-DSA

Party 1 Party 2

(pk, sk) = KeyGen()

A 4

Sign(sk, m) Verify(pk, m, o)
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Party 1 Party 2

pk,, sk, ) = KeyGen() Since sk is used as
( g p) _| labels, traces for

Tp ~ Slgn(Skp'mP) «| | profining cannot be
M = TrainModel(T;, sk, ) captured from the
device under attack

pk pk
(pk, sk) = KeyGen() > >
m,o m,o
Sign(sk, m) > >
e \ T Profiling stage
- \ o sk’ = M(T) Attack stage for
— | sk = RecoverKey(sk") secret key recovery
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Countermeasures




Secret

11110000

T

01010101 10100101

Random mask Secret ® Random mask

changed at each @ is bitwise XOR
execution
share 1 share 2

First-order Boolean masking
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Masking and shuffling countermeasures

Secret

11110000

00101011

Secret permuted

Shuffling




How DL helps break masking

PROFILING STAGE Training Labels =
Device under traces i bit of m Model N
attack ﬂ
“m'\ﬁ\‘ "U‘.u‘ ‘|w"\“‘n”|‘ m mU] = ’
Messages m | bk _ ®
generated at Ciphertexts H"‘M‘ ”“““‘”‘“‘”‘ 1 mi] =
random ¢ = Encrypt(pk,m) o
‘W ‘Hm‘ |\ \‘ u”ﬂ ”M\ i1 =
PN il o
mfl®rf] rli]
ATTACK STAGE
Test traces Model N,
Device under
attaCk ‘\Ml‘ ‘\” \ \‘u‘h w‘ |vg \NL .
‘H‘ I RLIRRLL]
ji" bit of m =
Decrypt(sk,c)

A,
bt

Q W—J w—/ Xrp=1
m]®rf] rl]

bl . —
Ciphertext : Hmh“‘w M ® @ p[m{j]=0]
: " ® ® p(mij=1]

o

A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM Implementation,

K. Ngo, E. Dubrova, Q. Guo, T. Johansson, TCHES’2021(4), 676-707
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Attacks on ML-KEM and ML-DSA




Six attacks on software implementations

 ML-KEM:
« DL-SCA on an unmasked implementation
« DL-SCA on a first-order masked & shuffled implementation
« Fl attack on a first-order masked & shuffled implementation
 DL-SCA on a higher-order masked implementation

- ML-DSA
 DL-SCA on an unmasked implementation
« Fl attack on an unmasked implementation
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Secret key recovery attack on unmasked
Kyber using k chosen ciphertexts

A Side-Channel Secret Key Recovery Attack on CRYSTALS-Kyber
Using k Chosen Ciphertexts, R. Wang, E. Dubrova, C2S/’2023




Attack detalls

« Kyber-768 C implementation:

« Kannwischer, M.J., Petri, R., Rijneveld, J., Schwabe, P., Stoffelen, K.:
PQM4: Post-quantum crypto library for the ARM Cortex-M4,
https://github.com/mupg/pgm4

« Complied with optimization level -O3

« Attack point:

— Decryption step of decapsulation

* message decoding and polynomial
reduction procedures

e Target board:
— ARM Cortex-M4 in CW308TSTM32F4

photo credit: Ruize Wang
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Message decoding and polynomial reduction
procedures

void poly_tomsg(char *msg, poly *a)
1: for (i = 0; i < BYTES; i++) do
2:  msgli] = 0;

3 for (j = 0; j < 8; j++) do

4: t=(((a->coeffs[8*i+j]<<1) + KYBER_Q/2)/KYBER_Q)&1;
D: msgli] |= t<<j;

6: end for

7. end for

void poly_reduce(poly *r)
1: asm_barrett_reduce(r->coeffs); /*In assembly*/
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Power trace of poly reduce() and poly tomsg()

poly_ reduce() : poly_tomsg()

B A

0.15 A

0.10 A

0.05 A

0.00 A

—0.05 A

ADC measurement

—0.10 A

—0.15 A

16 polynomial coefficients
0.05

0.00 - .

—0.05 -

ADC measurement

250 300 330 e 400

-0 50 100 150 200

0.10 -4“
0.05 1
0.00
—0.05 4

=0.10

ADC measurement

8 message bits

o] 100

—0.15 . . .
200 300 400

PROACT 2025




Leakage analysis of poly_ tomsg()

o 0.10
]
£ 005
(U]
§ 0.00 1
©
g -0.05
2 -0.10
<
-0.15 - ; , : . T
0 100 200 300 400
(a)
—— m[0] — ml[4]
o 300 - —— m[l] —— m[5] . O
bt — m[2] —— m[6] =
S 204 ' =mpl = m¥ m[l]
AR A s
VAN AR 1~
AN AN A Wi i = 1
. A MAAM Ve MV ANN YA M VM, [
0 200
(b)
Trace point

(a) Power trace of poly tomsg(); (b) T-test for 8 message bits (100K traces)
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Leakage analysis of poly reduce()

0.05 1

0.00 A

—0.05 A

ADC measure

200 1

HW(input) = 0 vs
HW(input) = 11

150 A

50 1

T-test score

250

200

HW(tmp) =0 vs
HW(tmp) = 13

150 1

st score

100 1

T-te

HW/(output) = 0 vs
HW/(output) = 6

(a) Power trace of poly reduce(): (b,c,d) T-test for 16 poly. coeff. (100K traces)
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Probability mass

Probability mass

Distributions of power consumption for
different intermediate variables

0.03 1 — HW=0
— HW =6
0.02 - — HW =11
0.01 A
0.00 1 1 L 1 1 ) 1
-0.15 -0.10 -0.05 0.00 0.05 0.10
(a) poly_reduce input
0.03 A = HW =0
— HW =6
0.02 A
0.01 A
0.00 L 1 Ll T 1 T 1
-0.15 -0.10 -0.05 0.00 0.05 0.10

ADC measurement
(c) poly_reduce output
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0.04 -
0.03 -
0.02 -

0.01 -

0.00 A

— HW=0
— HW =13

~0.10

-0.05 0.00 0.05 0.10 0.15
(b) poly_reduce tmp

0.05 A
0.04 -
0.03 -
0.02 -
0.01 -

—— message bit =10
-~ message bit=1

0.00 A

=020 =0.15 —0.10 <=0.05 0.00 0.05 0.10 015

ADC measurement
(d) poly_tomsg message bit




Chosen ciphertext construction method

The secret key s consists three polynomials s = (s, 54, S,)
The ciphertext ¢ = (u, v) consists of u = (u, u,u,) and v
To recover n coefficients of s;, we set:

(k1,0,0) € Ro*' fori=0 255
w=1{(0,k1,0) € B> fori=1 v=Fho» 2’ € R
(0,0,k1) € R for i =2 j=0

Then, for i € {0,1,2}, m|j] is a function of the tuple (k,, k,, silj]):
255

v— 8 u—Z(k kis;[j]) xj
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Chosen ciphertext construction, cont.

Search through all possible k, k, € Z, to construct ¢ = (u, v)
such that:

1.

The number of different HWs of poly reduce() intermediate
variables is minimized

Hamming distances between poly reduce() intermediate
variables are maximized

There are both 0 and 1 message bits in poly tomsg()
Given 1-3, all five key coefficients are uniquely defined
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Mapping of intermediate values into secret key
coefficients for k; = 0 and k; = 1369

Procedure Variable -2 -1 0 1 2
nput -591 1369 0 -1369 591
oty veduce 1) (6 () (1) (6)
tmp -3329 0 0 -3329 0
(13) (0) (0) (13) (0)
2738 1369 0 1960 591

output

(6) (6) (0) (6) (6)

poly_tomsg

message bit

0 1 0 1 0
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Mapping of MLP’s labels into secret key
coefficients for k, = 0 and k; = 1369

Procedure MLP models -2 -1 0 1 2
(MG ML 1 2 0 1 2

poly_reduce {thp’ B Mfi-mp 1 0 0 1 0
{MGE, - MO 1 1 0 1 1

poly_tomsg | {MP*™, ... ,Mng} 0O 1 0 1 O
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Empirical secret key recovery results
(mean for 100 different secret keys)

For profiling device For device under attack
N x k Single Full Single Full
coefficient key # enum. | coefficient key # enum.

1x3 0.9990 0.47 0.9940 0.02

10 x 3 0.9997 0.81 53 0.9990 0.43 54
20 x 3 0.9997 0.81 53 0.9991 0.45 53
50 x 3 0.9997 0.81 52 0.9994 0.53 52

100 x 3 0.9997 0.81 52 0.9994 0.53 52
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Number of chosen ciphertexts required for

Kyber-768 secret key recovery

Attack Detect| Protected
Paper Attack target method #CCT errors | implem, Real
Xu et al. [32 Message encoding 4% 3 No No Yes
Ravi et al. |21 Message decoding Template 3x3 No No Yes
Mu et al. |16 Barrett reduction 11 No No Yes
Sim et al. |26 Clustering| 3 x 3 No No Yes
Hamburg et al. |10 NTT Template | 1 x 3™ No Yes No
Backlund et al. Message decoding 4 x 3" Yes Yes Yes
: MLP
This work Message decoding & 1x3 Yes No Yes

Barrett reduction

*For noise tolerance level o < 1.2 in the Hamming weight (HW) leakage.
“*If a linear code with the code distance two is used for constructing CCT.
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Secret key recovery attacks on a
masked and shuffled ML-KEM

Secret Key Recovery Attack on Masked and Shuffled Implementations of
CRYSTALS-Kyber and Saber, L. Backlund, K. Ngo, J. Gartner, E.
Dubrova, in ACNS Workshops, 2023

Breaking SCA-Protected CRYSTALS-Kyber with a Single Trace, S.
Jendral, K. Ngo, R. Wang, E. Dubrova, HOST’2024




Attack detalls

« Kyber-768 C implementation (with shuffling added):

« Heinz, D.,Kannwischer, M.J., Land, G., P6ppelmann, T., Schwabe,
P., Sprenkels: First-order masked Kyber on ARM Cortex-M4.
Cryptology ePrint Archive, Report 2022/058

« Complied with optimization level -O3

« Attack point:

— Decryption step of decapsulation
* message decoding
» Fisher-Yates index generation and usage

e Target board:
— ARM Cortex-M4 in CW308TSTM32F4

photo credit: Linus Backlund
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Message recovery for a shuffled implementation

Index| 0 | 1| 2| 3| 4 Permuted | , | 3|1 1 | o | 2
iIndex
m 1 m 1101011

111
i O L

Individual message bits can be recovered, but their order is unknown
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M l11]o0fl1]l0]1 HW(m) =3
Tl’ — m[0] =1
m olo]1|o0]1 HW(m') = 2

Ravi, P., Bhasin, S., Roy, S., Chattopadhyay, A., On exploiting message leakage in
(few) NIST PQC candidates for practical message recovery and key recovery
attacks, https://eprint.iacr.org/2020/1559.pdf

Ngo, K., Dubrova, E., Johansson, T., Breaking masked and shuffled CCA secure
Saber KEM by power analysis, ASHES'2021
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void masked_poly_tomsg(uint8 msgl[2] [32],
uint16 poly[2] [256])

uintl16 c[2];

uint8 permutation[256];

ADC measurement

1: FY_Gen(permutation, 256);
2: for (x = 0; x < 256; x++) do

3:

4
D:
6:
7.
8
9:

x_rand = permutation[x];

i = x_rand / 8; ——5\\\\\\_*
j = x_rand % 8;

... Processing ...

msg[0] [1] += ((c[0] >> 15) & 1)<<j;
msg[1][i] += ((c[1] >> 15) & 1)<<j;

end for
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FY index generation

0.2
2 01-
void FY Gen(uint8+* permutation, int max) ¢
2 0.0
1: for (i = 0; i < max; i++) do & _on
Q —o.
2:  permutation[i] = i; <
-0.2 T T T T
3: end fOI‘ 10100 10200 10300 10400 10500 10600
Ti int
4: for (4 = max - 1; 1 > 0; i=i-1) do rece pem
5% int index = rand() % (i+1); 40 -
6: uint8 temp = permutation[index]; — o 27
7:  permutation[index] = permutation[il; £ °f*
2 —20
8: permutation[i] = temp; > 2]
9: end for a5

10100 10200 10300 10400 10500 10600
Trace point

T-test on 5K traces
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Distributions of power consumption for FY
iIndex generation

80

100
60 -
—_— HW =8 : 555
5 807 —— HW =7 401
G — HW=6 50 ]
€ 60 - — HW =5
2 0 : . . : : ; :
= — HW =4 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
o)
g 40 - —_ HW =3 80
o — HW = 2
0'20_ _HW=1 60 7 :éig
0 = T \I T T
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
ADC measurement 0

0.07 0.08 0.09 0.10 0.11 0.12
ADC measurement

Only FY indexes with HW = 0 and 8 can be distinguished with a high
probablitiy (from a single trace)

Solution: Recover message bits with these indexes only & rotate cyclically

PROACT 2025




The maximum number of traces required for
secret key recovery in all 10 attacks

Algorithm
8 6 4

Saber ASHES21 bit flipping method - - 61680 ) 13 times
Saber FY index recovery method - 4608 9216
Kyber FY index recovery method 48384 38016 59136

smaller
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Skipping shuffling with a fault injection

FY index generation

init_loop:
strb.w r3, [r2, #1]!
adds r3, #1 <
cmp.w r3, #256
bne.n init_loop
add r3, sp, #32
addw ré6, sp, #2387
rsb rd, r3, #1
shuffle_loop:
bl rng_get_random_blocking
adds r3, r4, ré6
udiv r2, rO, r3
mls r0, r2, r3, r0
add r3, sp, #32
add ri, sp, #32 ~
1drb r3, [r3, ro] h
1drb r2, [r6, #0]
strb r2, [ri, ro]
strb.w r3, [r6], #-1
cmp ré6, ri
mov r3, ri ><
bne shuffle_loop

PROACT 2025

Initialization

Shuffling

Voltage glitch injection
(0.89 success rate)




Message recovery attack on a higher-
order masked ML-KEM

Breaking a Fifth-Order Masked Implementation of
CRYSTALS-Kyber by Copy-Paste, E. Dubrova, K. Ngo, J. Gartner
R. Wang, RWC’23, APKC’23




Attack detalls

« Kyber-768 C implementation (extended to higher orders):

« Heinz, D.,Kannwischer, M.J., Land, G., POppelmann, T., Schwabe,
P., Sprenkels: First-order masked Kyber on ARM Cortex-M4.
Cryptology ePrint Archive, Report 2022/058 (2022)

« Complied with optimization level -O3

« Attack point:
— Re-encryption step of decapsulation
* message encoding
« Target board:
— ARM Cortex-M4 in CW308TSTM32F4

photo credit: Kalle Ngo
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Non-masked message encoding in Kyber
Implementation of Kannwischer et al.

function POLY_FROMMSG (poly *r, unsigned char msg|32])
uintl6 mask
for (int i=0; i < 32; i++) do
for (int j=0; j < 8; j++) do

mask = -((msgl[i] >> j) &) 1) /* bit extraction */
r.coeff[8*i+j] = mask & ((KYBER.Q + 1)/2)
end for
end for Mask takes values 0x0000 or OxFFFF

Large difference in Hamming weight = easy to distinguish
First described by Amiet et al. for NewHope KEM, ICPQC’2020

end function
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Distributions of power consumption for
message bits

0.100 - —— message bit =0
) — message bit =1
G 0.075 - 2
e
>
= 0.050 A
0
(]
0
© 0.025 A
o
O-OOO 1 || || 1 1 1 1 1 1
-0.14 -0.12 -0.10 —-0.08 —-0.06 —-0.04 —-0.02 0.00

ADC measurement

Non-overlapping distributions = easy to distinguish
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Masked message encoding in Kyber
Implementation on Heinz et al.

void masked_poly_frommsg(uint16 poly[2]1[256],
uint8 msg[2][32])

1: for (i = 0; 1 < 32; i++) do

22 for(j =0; j <8; j++) do
3 mask = -((msg[@][i] » j) & 1); [* Boolean share 0 bit extraction */
4 poly[@][8%i+j] += (mask&((KYBER_Q+1)/2));
5: end for
6. end for

7. for (1 = 0; i < 32; i++) do

g for(j =0; j <8; j++) do

9 mask = -((msgl1][i] » j) & 1); /* Boolean share 1 bit extraction */

10: poly[11[8xi+j] += (mask&((KYBER_Q+1)/2));
11: end for
12: end for

13: ...
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Segment of power trace of re-encryption in
Kyber implementation on Heinz et al.

32 bytes oflshare 1 32 bytes oflshare 2

0.15 -+

0.10 A

0.05 -
0.00
—0.05 A
—0.10 A

- -

- -~
- -~
=T

—-----

79000

masked_poly. -.adenoise() i masked_poly_frommsg() S, R

—_
-~
- -~
- -

o.10 « >

byte
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L More shares = more 32-byte blocks

&, &

ADC measurement

[
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Trace point

o5
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ADC measurement
0
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A measurement
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Copy-paste method

share 1 share 2 share?i share4I share 5 share 1share 2 share 3_share4shar65.share6
| I
5 o g Power traces
2" \/W (cut & concatenated
; o’ A ith bits of shares)
< | | <
| | | ' e
L | | oo ! o
R B b tm e m e Im‘q e
1) Copy/paste 2) Extend
i : N == Weights of MLP
: ; BatchNorm.1 layer
] M - J - before training
) il ) bl
- | |||i||i|‘l|lll uhﬂuduilh |L||ﬂ||lJ||I|I||I|i|||||u|ll|| Ihliulhi . |” |"|hL i “mHI‘H humliilll |||\numwil“h|lwlmil|\||‘|ihllm
T S S RO - 3) Train
Weights of MLP
‘} ‘ <  BatchNorm.1 layer
after training
N |I|‘ AIIdellun‘llli l‘h.,m" ‘"Iil" ||i||h“| ““I‘I

PROACT 2025




Attack results for the first-order masking

Attack Mean empirical probability to recover ith message bit "
wee [ o [ 1 T 2 3] 4[5 []e [ 7]

ﬁ;ncgele- 0.9992 0.9989 0.9953 0.9841 0.9876 0.9835 0.9393 0.9067 0.9743

\r/(\)/'ig’]tigns 0.9994 0.9991 0.9993 0.9990 0.9988 0.9885 0.9993 0.9992 0.9991

PROACT 2025




20-trace attack results for 5-order masking
(with 4 negacyclic rotations and 5 repetitions)

- Mean empirical probability to recover it message bit AVg
o | 1] 2 | 3 | 4 | 5 | 6 | 7 ] _
5

1.0000 0.9987 1.0000 0.9989 1.0000 0.9992 1.0000 0.9988 0.9995

w5

0.8709

pmesage

Since ranom masks are updated at each execution,
errors in repeated measurments are more
Independent than in the non-masked case
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Secret Key Recovery Attacks on ML-DSA

Ruize Wang, Kalle Ngo, Joel Géartner, Elena Dubrova, Ruize et al. Unpacking Needs
Protection: A Single-Trace Secret Key Recovery Attack on Dilithium, IACR
Communications in Cryptology, 2024, 1(3)

A Single-Trace Fault Injection Attack on Hedged Module Lattice Digital Signature
Algorithm (ML-DSA), S. Jendral, J. P. Mattsson and E. Dubrova, FDTC’2024




Attack detalls

 Dilithium-2 C implementation (unprotected):

— Abdulrahman, A., Hwang, V., Kannwischer, M.J., Sprenkels, A.,
Faster Kyber and Dilithium on the Cortex-M4, ACNS'2022

— Complied with optimization level -O3

« Attack point: — A

— Secret key unpacking skDecode at the
first step of step of signing algorithm

« Target board: '
— ARM Cortex-M4 in CW308TSTM32F4

photo credit: Kalle Ngo
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C code of secret key unpacking procedure

void unpack_sk(uint8_t rho, uint8_t tr, uint8_t key, polyvec *t0, smallpoly

si,
unsigned int i;
1:

ol

[ §

S

1llpol 2 int8_t sk :
smallpoly s2, uint8_t sk) Called # = 4 times to unpack 96 bytes of

. each of £ polynomials of s, into n = 256
unpacking rho, tr and Vcoefﬁcients in the range [-n, n], n =2
for (i = 0; 1 < L; ++i) do

small_polyeta_unpack(&si[i], sk + i*POLYETA_PACKEDBYTES);
end for
sk += L*xPOLYETA PACKEDBYTES;
for (i = 0; 1 < K; ++i) do

small_polyeta_unpack(&s2[i], sk + ixPOLYETA_PACKEDBYTES) ;

end for
\ Called k = 4 times to unpack 96 bytes of

each of k polynomials of s, into n
coefficients in the range [-n, n]
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C code of small _polyeta unpack() procedure

void small_polyeta_unpack(smallpoly *r, uint8_t *a)

unsigned int 1i;

2: r->coeffs[8xi+0]
3: r->coeffs[8%i+1]
4: r->coeffs[8xi+2]
range [0, 2n] < 5. r->coeffs[8%i+3]

(in reverse) 6: r->coeffs[8xi+4]
7: r->coeffs[8%i+5]

8: r->coeffs[8xi+6]

9: r->coeffs[8*i+7]

~ 10: r->coeffs[8%i+0]

11: r->coeffs[8*xi+1]

12: r->coeffs[8xi+2]

13: r->coeffs[8xi+3]

range [—n’ r’] < 14: r->coeffs[8+i+4]
15: r->coeffs[8%i+5]

16: r->coeffs[8*i+6]

17: r->coeffs[8%i+7]

« 18: end for

PROACT 2025

1: for (1 = 0; 1 < N/8; ++1i) do

(a[3%i+0] >> 0) & 7;
(a[3%i+0] >> 3) & 7;
((a[3%i+0] >> 6) | (al[3*i+1] << 2)) & 7;
(a[3*%i+1] >> 1) & 7;
(a[3%i+1] >> 4) & 7;
((al3*%i+1] >> 7) | (al3*i+2] << 1)) & 7;
(a[3%i+2] >> 2) & 7;
(a[3%i+2] >> B) & 7;

ETA - r->coeffs[8%i+0];
ETA - r->coeffs[8*i+1];
ETA - r->coeffs[8*i+2];
ETA - r->coeffs[8%i+3];
ETA - r->coeffs[8*i+4];
ETA - r->coeffs[8%i+5];
ETA - r->coeffs[8%i+6];
ETA - r->coeffs[8%i+7];




Power analysis

Power consumption in a software implementation is typically
proportional to the Hamming weight (HW) of processed data

The coefficients of s; and s, are represented as 16-bits integers

Negative numbers are represented in two's complement
= -1 = OXFFFF and -2 = OXFFFE

The Hamming weight of (4, 3,2,1,0)isHW=(1, 2,1, 1, 0)
The Hamming weight of (-2,-1, 0, 1, 2) is HW = (15, 16, 0, 1, 1)
The pairs are unique: ((1, 15), (2, 16), (1, 0), (1, 1), (0, 1))
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ADC measurement

Distributions of power consumption during the processing of the 1st coefficient
of s; by small_polyeta unpack(): (a) in the range [0, 2n], (b) in the range [-n, n]
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Segment of trace of small_polyeta_unpack()
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Time for capturing the training and test sets

Training | Time for capturing 5 x 2.5K traces
et 4.8 hrs
Tost Time for capturing N traces
1.2 sec 36.6 sec 358.2 sec

« Eight neural network models were trained

« The training time for a single model is less than 40 min
= the total profiling time is less than 10 hours
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Experimental results

Table: Empirical probability to recover a single coefficient of s, s,[j], from N traces
(mean over all s,[j] with the same j mod 8, for | € {0, 1,..., 1023})

7 mod &
0 1 2 3 4 5 6 7

1 0.942 0925 0975 0967 0945 0.920 0924 0.784

10 0.980 0.951 0999 0993 0988 0951 0.956  0.863
100 0.983  0.952 0999 0995 0991 0954 0959 0.870
1000/‘ 0.983 0954 0.999 0.995 0991  0.956  0.960  0.871

N

/ - The compiler does not allocate store and mask 4
Probability flattens : . : -
after N = 100 Instructions in the same way as for the other coefficients

= values are manipulated less
— weaker leakage
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Two post-processing methods

To complement power analysis, we use two methods:

1. Solving a system of linear equations induced by t =As; + s,
— assumes the knowledge of t,

2. Lattice reduction

— aims to find a new basis for the same lattice but with shorter, more
orthogonal basis vectors

PROACT 2025




Linear algebra (LA)-based method

1. Predict all coefficients of s, and s, using NN models
2. Sort by the maximum predicted probability
3. Accept as correct the top half
4. Derive the rest by solving linear equations
Probability to recover 1024 coefficients of s; and ss ‘ LA post-processing
N=1 N =10 N =100 N =1000 | CPU time
0.09 0.83 0.99 1 | 2 sec
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Lattice reduction-based method

1. Predict all coefficients of s, using NN models

2. Sort by the maximum predicted probability

3. Accept as correct a top fraction x estimate of Core-SVP

4. Derive the rest by lattice reduction bit hardness, a = 0.292f
«  Block Korkin-Zolotarev (BKZ) algorithm BKZ blocksize \

\
Fraction Probability to recover |« - 1024 coeff. of s; BKZ post—pro\gessing
. N=1 N=10 N=100 N = 1000 '3 o

3/4 0 0.16 0.70 0.82 160 46.7
4/5 0 0.04 0.42 0.54 115 33.6
5/6, 0 0.01 0.20 0.26 86 25.2

attack takes =~ 6 hours
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Skipping SHAKE256 absorbtion by fault injection

« SHAKEZ256 is an eXtendable Output Function (XOF) based
on Keccak family

« Uses sponge construction (absorbtion + squeezing)

« Used in ML-DSA to expand seeds, hash messages and
sample matrices/vectors
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Sponge construction

M Z
pad i {111
( 2 Y ) ) ' Y 2
rolo—p—~ b —b— —— H— - -
f f f fli f f
C O > - > - E > > >
\ / —/ _/ ! N/ N
absorbing squeezing
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Skipping absorbtion

Output is a constant

Z
; L1
r = =
r<|o A EN - ,
f f
c{|o S : :
\ : \_/ \_/
squeezing
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Input: Private key sk, message M

Key recovery from a known p’

8: while (z,h) = 1 do

Output: Signature o 9. N ExpandMask(p’, k)
1 (p,K,tr,s,,8,,t,) — skDecode(sk) 10: €< Ay
2. A — ExpandA(p) 1 c<— H( [
3 u— H(tr || M,512) 120, Z<=Yy+CcCs,
4: rnd — {0, 1}2%6 13: if |z|| _ =y, — Pthen(z,h) — L
5. p' — H(K || rnd || i, 512) 14: | K=K+l
6 K —0 15: 0 — sigEncode(¢,z mod™* q)
7 (z,h) — L 16: return o
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Summary

* Practical side-channel and fault attacks on software
Implementations of ML-KEM and ML-DSA are possible

« Implementations protected by both masking and shuffling,
or higher-order masking, may also be vulnerable

» Features of lattice-based algorithms such as bit flipping and
cyclic rotation are helpful for the attacker

« Stronger countermeasures against physical attacks on
software implementations of ML-KEM and ML-DSA are
needed
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