

Thanks to co-pilot for the
pictures in this readout

Embedded Security: Challenges and Opportunities when Migrating to Post-Quantum Cryptography

Joppe Bos

June 2025

Chania, Crete, Greece

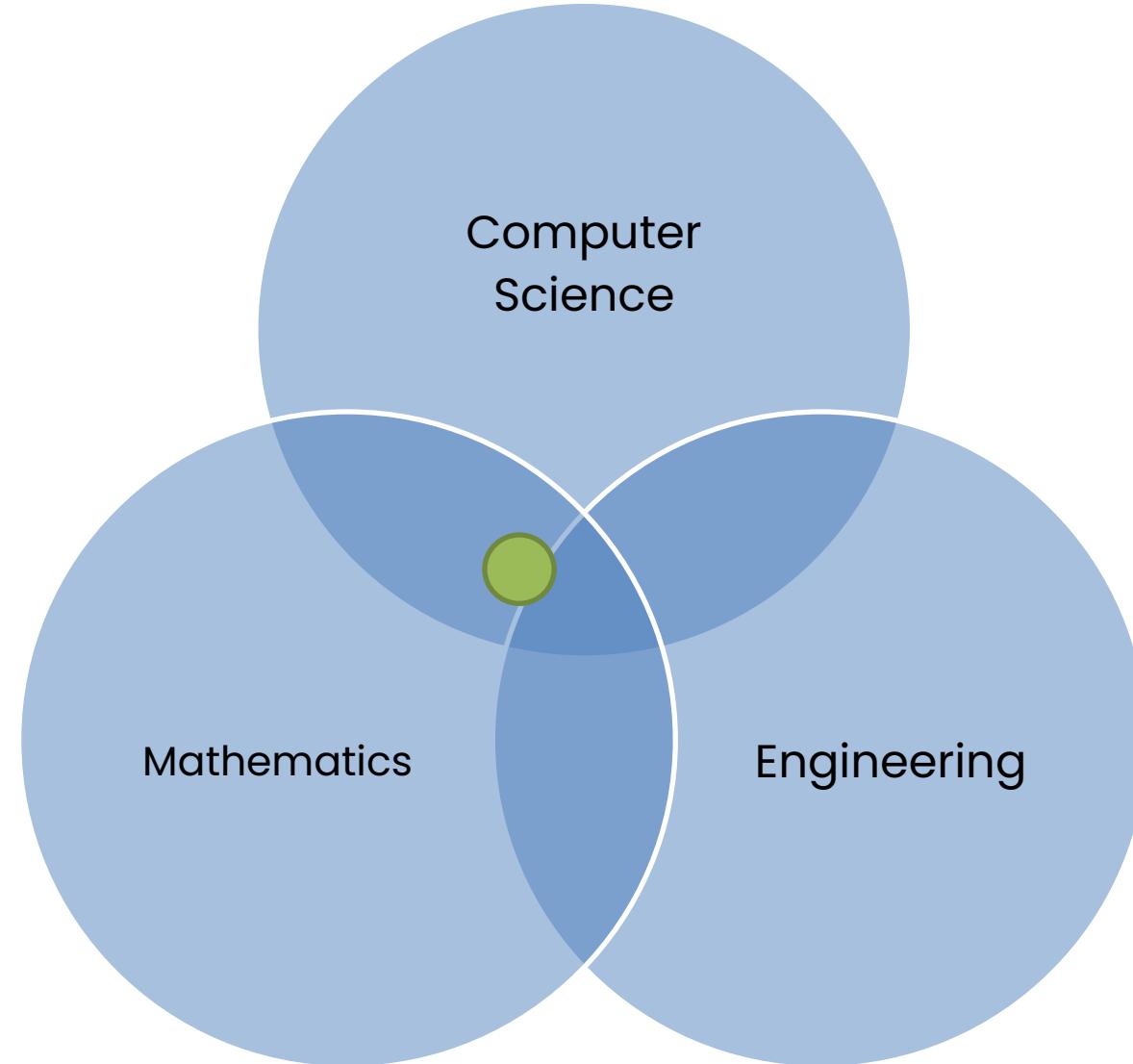
WHOAMI

- Cryptographic researcher + Technical Director
 - Competence center crypto & security at NXP Semiconductors, Leuven
 - Lead the PQC team
 - Lead security + crypto funded projects & university relations
- Post-doc
 - Cryptography Research Group at Microsoft Research, Redmond, USA.
- PhD in Cryptology
 - EPFL, Lausanne, Switzerland
- Bachelor / Master in Computer Science
 - University of Amsterdam

Joppe W. Bos

Cryptographic Researcher and
Technical Director at NXP
Semiconductors

Secretary of the IACR (2017-
2019, 2020-2022)


Editor of the Cryptology ePrint
Archive (2019-today)

Editor-in-Chief of the IACR
Communications in Cryptology

Public Key Cryptography

Computational
number theory

Number
theoretic
transform

Breaking ECC

112-bit ECDLP
solved using 224
PlayStation 3
game consoles.

Together we accelerate the **breakthroughs** that advance our world

We design purpose-built, rigorously tested technologies that enable devices to sense, think, connect and act intelligently to improve people's daily lives.

Automotive

Mobile

Industrial & IoT

Communication Infrastructure

NXP locations

~34,200 team members with operations in more than 30 countries

Automotive market positions

Automotive

Technology Leadership +

- #1 Auto processors
- #1 Auto applications processors
- #1 Auto RF
- #1 Auto DSPs
- #1 Cross-domain processors

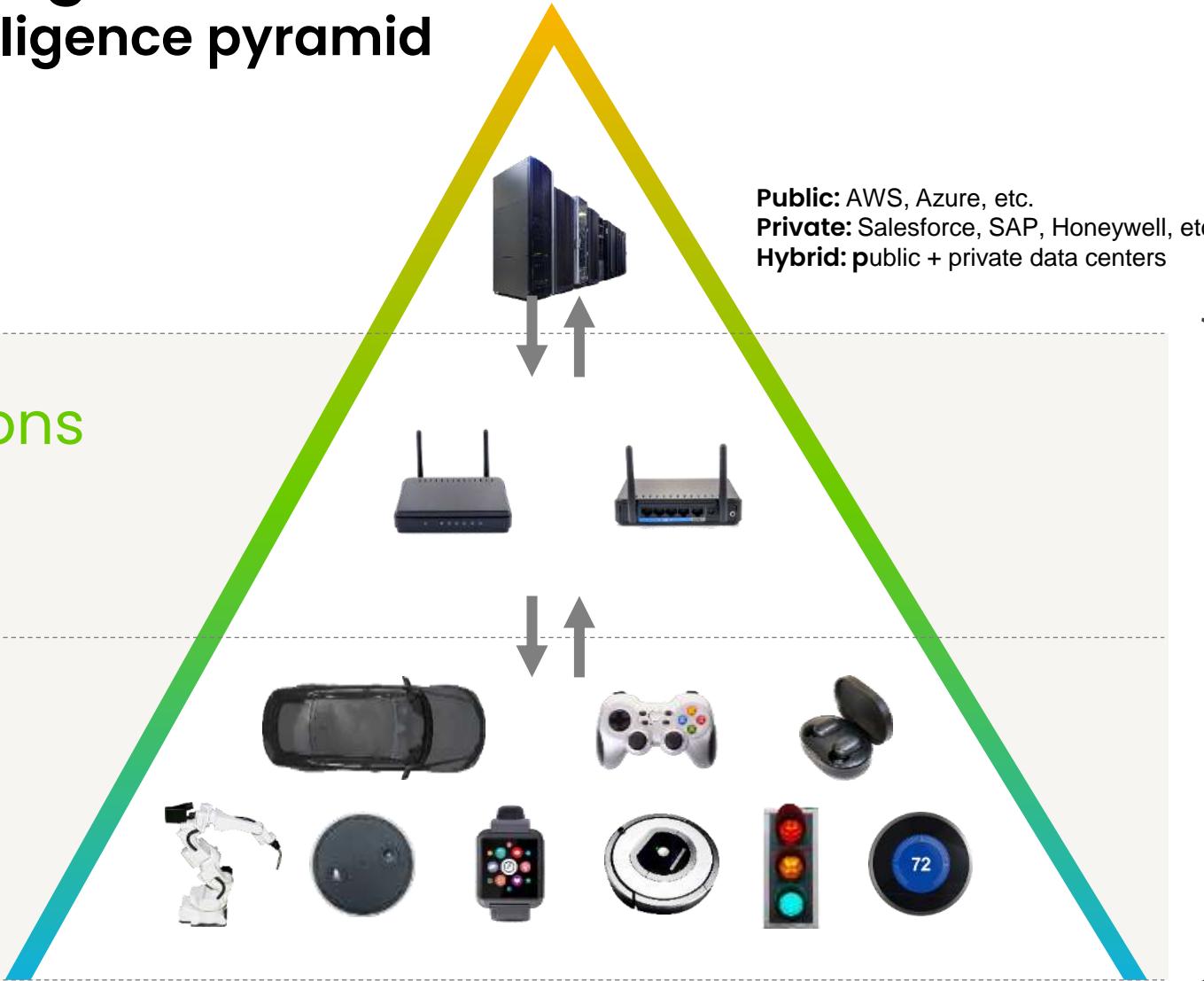
Applications Leadership

- #1 Infotainment
- #1 Car radio
- #1 Secure car access
- #1 In-vehicle networking

Sources: Strategy Analytics: Automotive Semiconductors Vendor Market Shares, April 2024, Strategy Analytics: Infotainment and Telematics Semiconductors Vendor Market Shares, April 2024, Gartner: Semiconductors Market Shares, April 2024, S&P: competitive landscaping tool, April 2024, IHS: automotive semiconductors market tracker, April 2024

Edge processing – a distributed intelligence pyramid

Millions


Cloud
Data centers

10's to 100's Millions

Network Edge
Network computing

Billions

Application Edge
IoT end points

NXP

Edge processing
served market

End-to-end solutions for Matter

A unified IP-based protocol to securely and robustly connect smart devices with each other, regardless of brand, and across smart home platforms

Bring interoperability in the Smart Home industry

Simplify development for “things”

Increase reliability for consumers

Ensure security and privacy

Led by global brands and 200+ companies

 matter

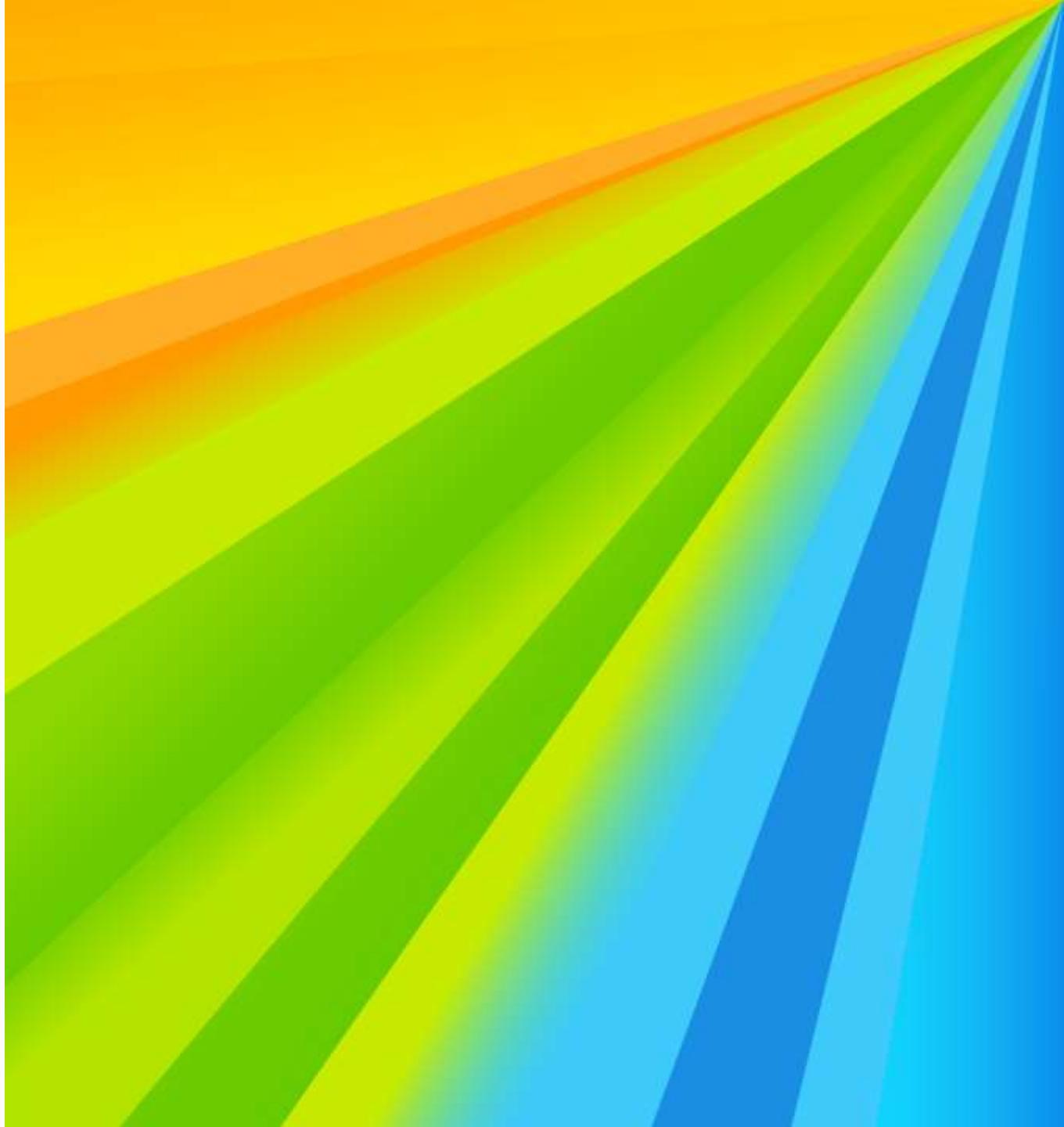
Classical Cryptography

Public-Key Cryptography

In **public-key** cryptography the theoretical foundation of the schemes used are problems which are **believed** to be hard

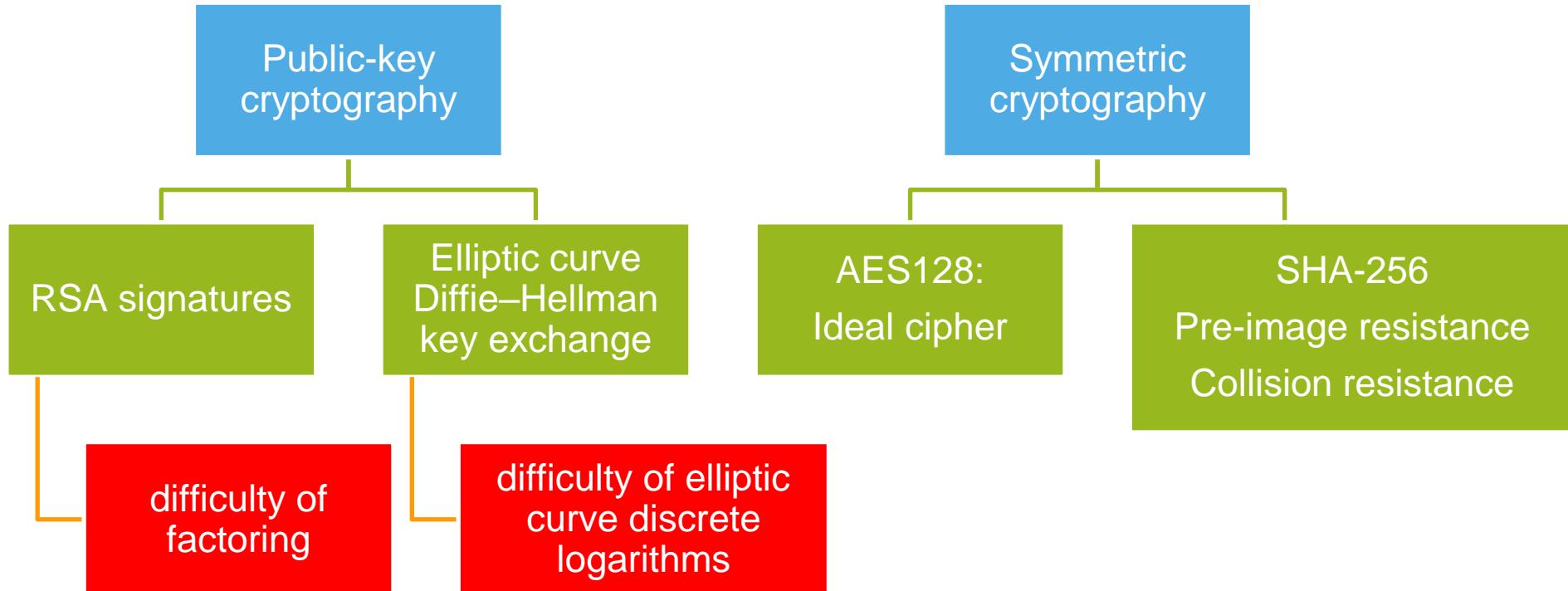
- Integer factorization problem (RSA)
- Discrete logarithm problem (DSA, ElGamal)

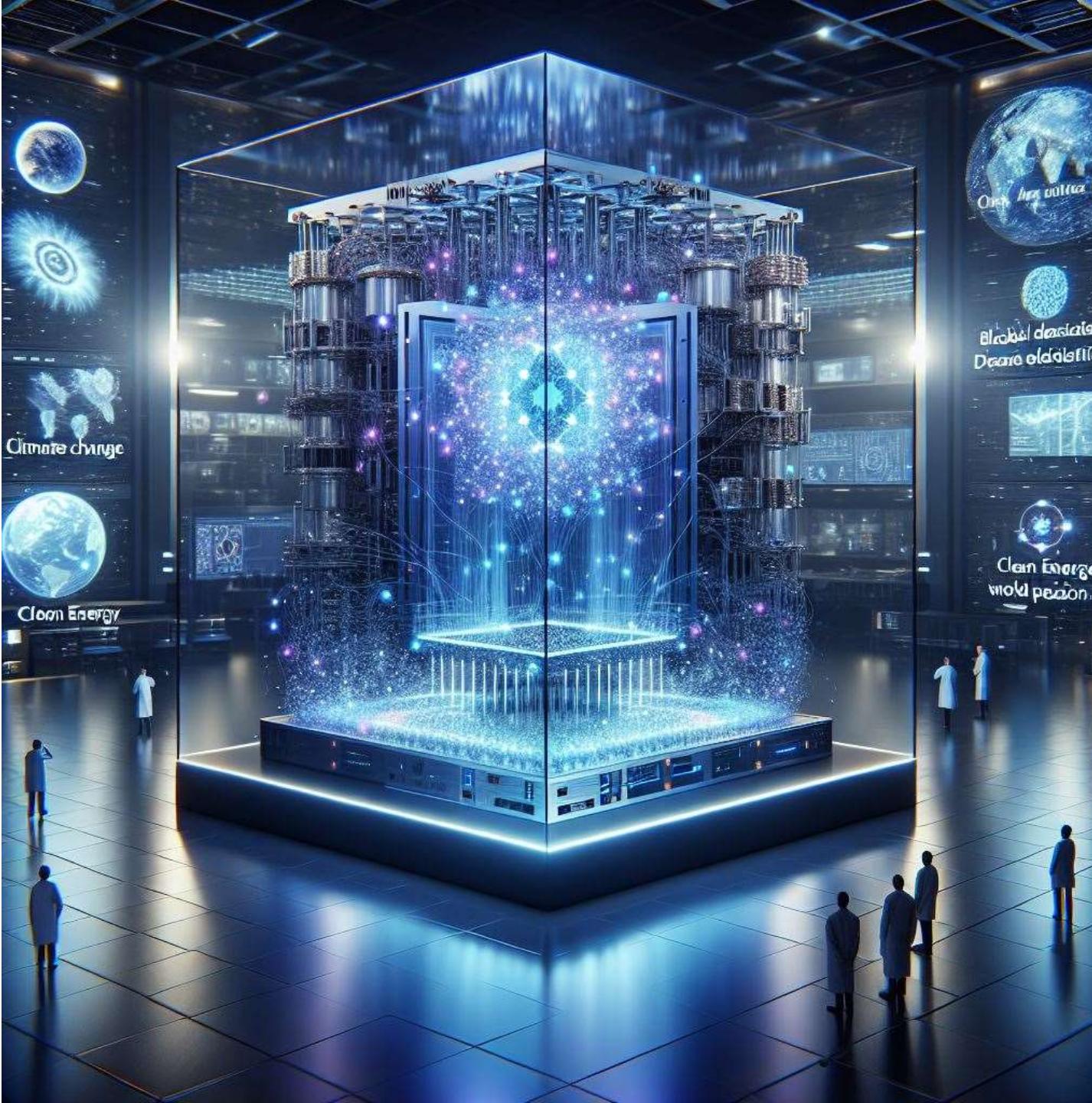
One of the main ingredients to these problems is a group


RSA $\rightarrow (\mathbb{Z}/N\mathbb{Z})^\times \rightarrow$ integers [1, 2, ..., $N - 1$] which are co-prime to N

DSA/ElGamal $\rightarrow \mathbb{F}_p^\times = (\mathbb{Z}/p\mathbb{Z})^\times \rightarrow$ integers [1, 2, ..., $p - 1$] where p is prime

Elliptic Curve Cryptography $\rightarrow E/\mathbb{F}_p \rightarrow$ point on $E(\mathbb{F}_p)$ where p is prime


Application	Encryption Scheme, Signature Scheme, Identification Scheme, etc.		
Cryptosystem	DSA, ElGamal, Schnorr, etc.		RSA, Rabin, etc.
Computational Problem	The Discrete Logarithm Problem in a Group of prime Order		The Factoring Problem
Algebraic Structure	The multiplicative group of integers modulo a prime	Elliptic Curve Group over a Finite Field	The set of integers modulo the product of two primes


Post-Quantum Cryptography

Contemporary Cryptography

TLS-ECDHE-RSA-AES128-GCM-SHA256

How IBM's new five-qubit universal quantum computer works

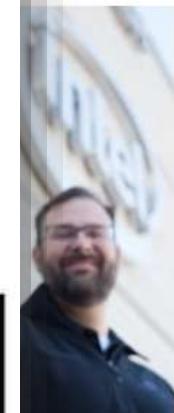
IBM achieves an important milestone with new quantum computer in the cloud.

CHRIS LEE NEWS | 23 October 2019

Hello quantum world! Google publishes landmark quantum supremacy claim

The company says that its quantum computer is the first to perform a calculation that would be practically impossible for a classical machine.

Elizabeth Gibney


NXP, eleQtron and ParityQC Reveal their First Quantum Computing Demonstrator for the DLR Quantum Computing Initiative

May 30, 2024 2:00 PM CEST (UTC+2) by NXP Semiconductors Press Release

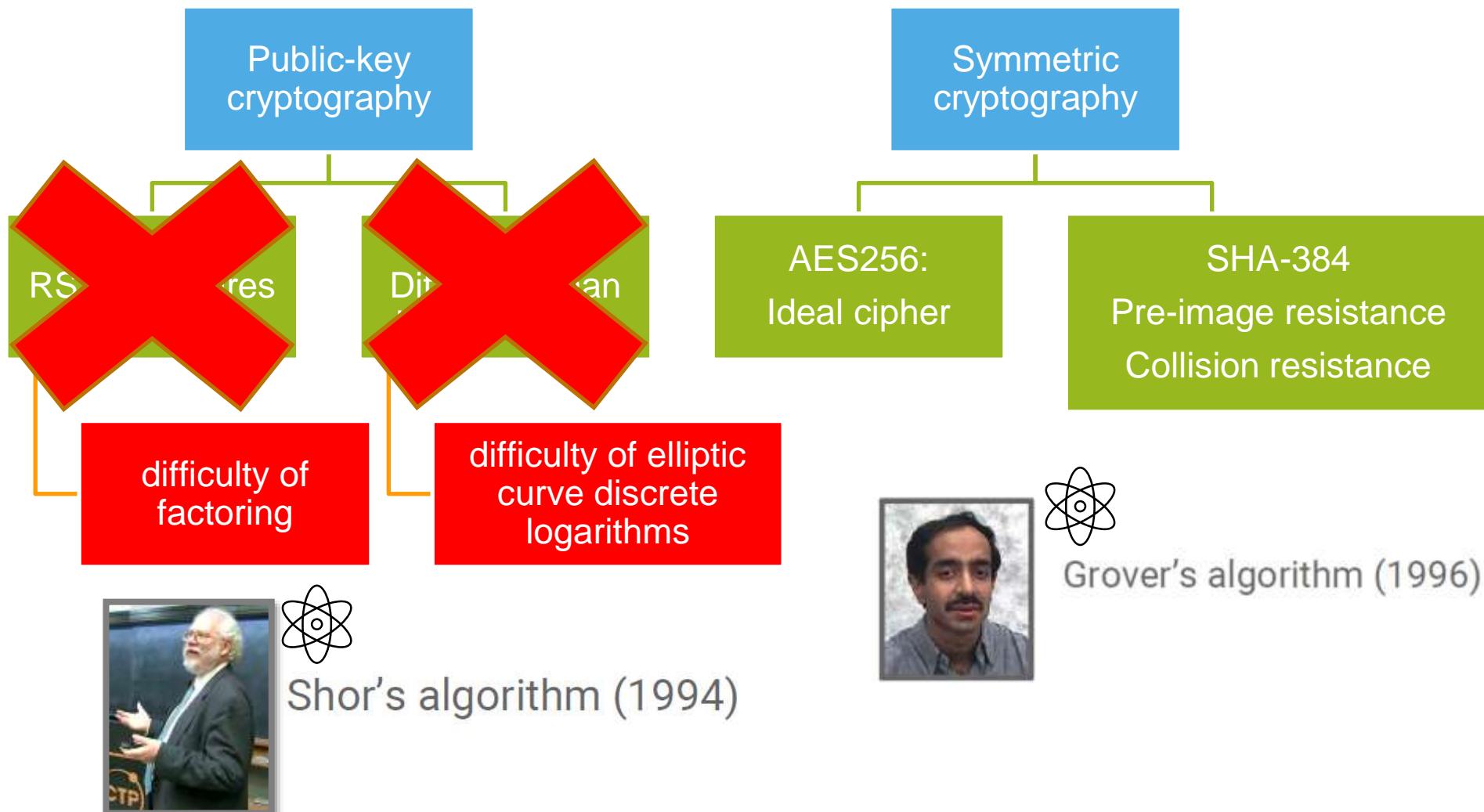
Eagle's quantum performance progress

Last November, IBM Quantum announced Eagle, a 127-qubit quantum processor based on the transmon superconducting qubit architecture. The IBM Quantum team adapted advanced semiconductor signal delivery and packaging into a technology node to develop superconducting quantum processors.

quantum new chip was performance.

SHARE

- NXP, eleQtron and quantum comput...
- It was commissioned by the DLR Quantum Computing Initiative (DLR QCI) to expand the quantum expertise of its partners from research and industry


Google Quantum AI and Collaborators
(Dated: August 27, 2024)

Quantum error correction below the surface code threshold

Contemporary cryptography

TLS-~~ECDHE-RSA~~-AES256-GCM-SHA384

“Double” the key sizes

Quantum potential to destroy security as we know it

Confidential email messages, private documents, and financial transactions

Secure today but could be compromised in the future, even if encrypted

Firmware update mechanisms in vehicles

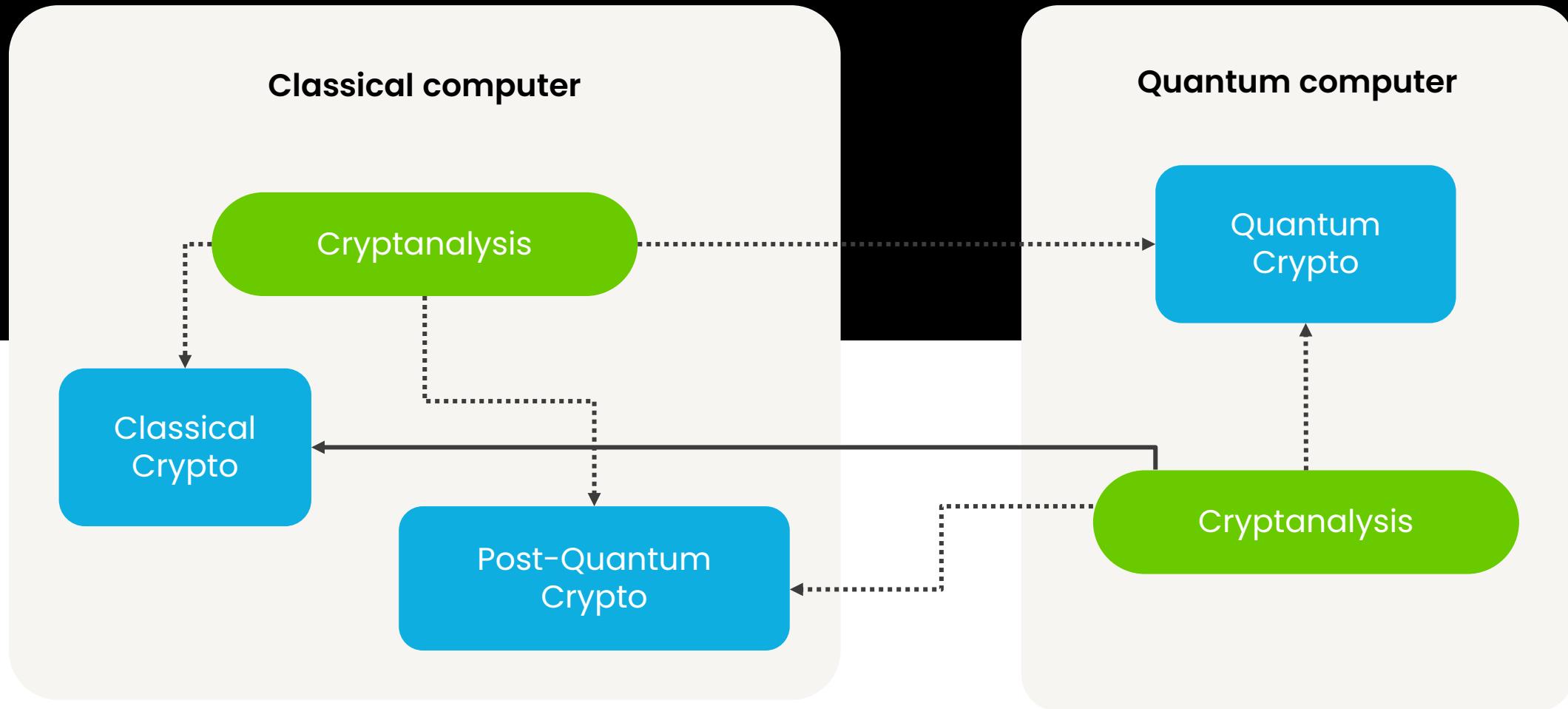
Could be circumvented and allow dangerous modifications

Critical industrial and public service infrastructure (for healthcare, utilities, and transportation using internet and virtual private networks)

Could become exposed – potentially destabilize cities

Audit trails and digitally signed documents associated with safety (auto certification and pharmaceutical authorizations)

Could be retrospectively modified



The integrity of blockchains

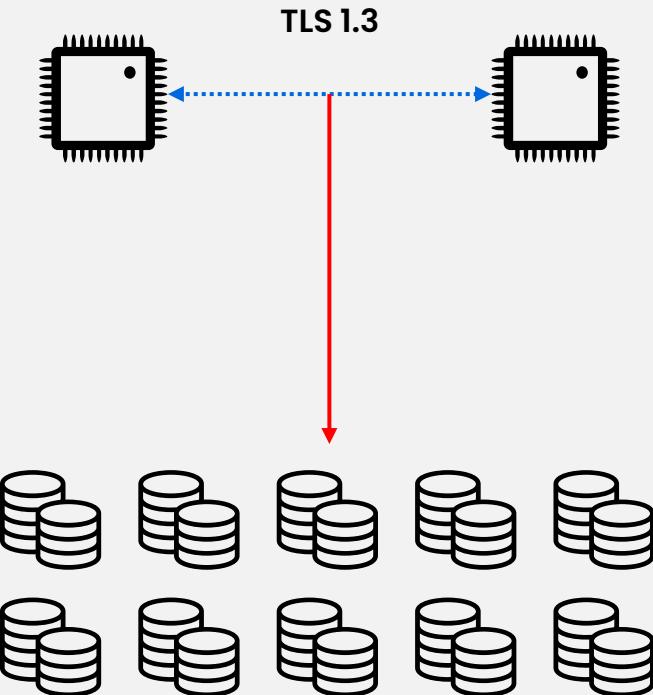
Could be retrospectively compromised – could include fraudulent manipulation of ledger and cryptocurrency transactions

Post-quantum versus quantum crypto

Is Post-Quantum Cryptography relevant for you?

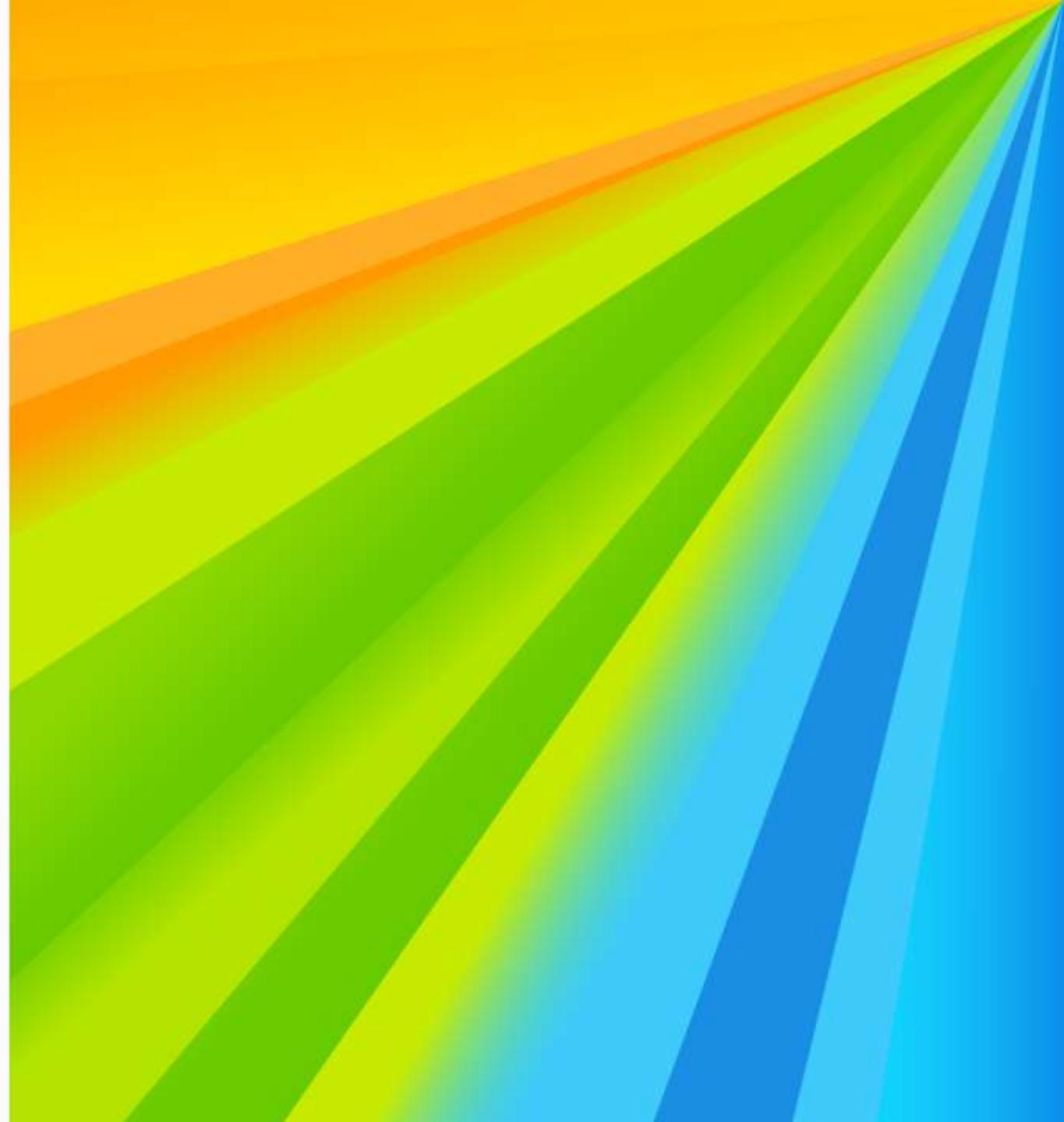
Standards & Compliance

NIST

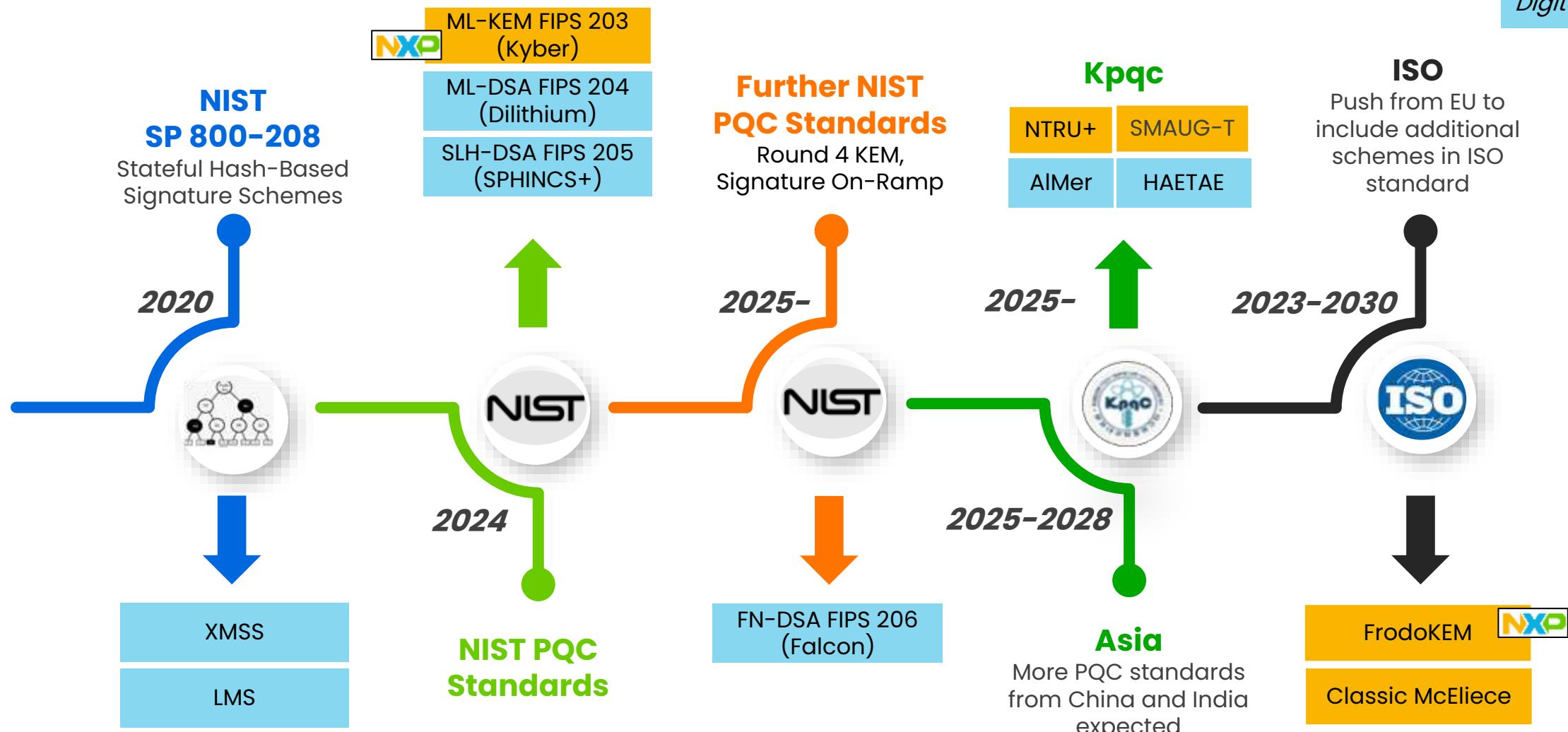


Crypto Agility

PQC RoT


Store Now Decrypt Later

**Post-quantum
crypto standards
are coming
It doesn't matter if
you believe in
quantum
computers or not**


PQC Standards

PQC standards

Key Exchange

Digital Signature

New algorithms and standards

FIPS 203
Federal Information Processing Standards Publication

Module-Lattice-Based Key-Escapsulation Mechanism Standard

Category: Computer Security Subcategory: Cryptography

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20889-8900

This publication is available free of charge from:
<https://doi.org/10.6028/NIST.FIPS.203>

Published August 13, 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary
National Institute of Standards and Technology
Lauren E. Lippman, NIST Director and Under Secretary of Commerce for Standards and Technology

Key Exchange / Encapsulation

FIPS 204
Federal Information Processing Standards Publication

Module-Lattice-Based Digital Signature Standard

Category: Computer Security Subcategory: Cryptography

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20889-8900

This publication is available free of charge from:
<https://doi.org/10.6028/NIST.FIPS.204>

Published August 13, 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary
National Institute of Standards and Technology
Lauren E. Lippman, NIST Director and Under Secretary of Commerce for Standards and Technology

Digital Signatures (generic)

NIST Special Publication 800-208
Feds Publication

Recommendation for Stateful Hash-Based Signature Schemes

Subcategory: Cryptography

David A. Cooper
Daniel C. Apon
Quynh H. Dang
Michael S. Davidson
Morris J. Dworkin
Carl A. Miller

This publication is available free of charge from:
<https://doi.org/10.6028/NIST.SP.800-208>

Digital Signatures (software / firmware signing)

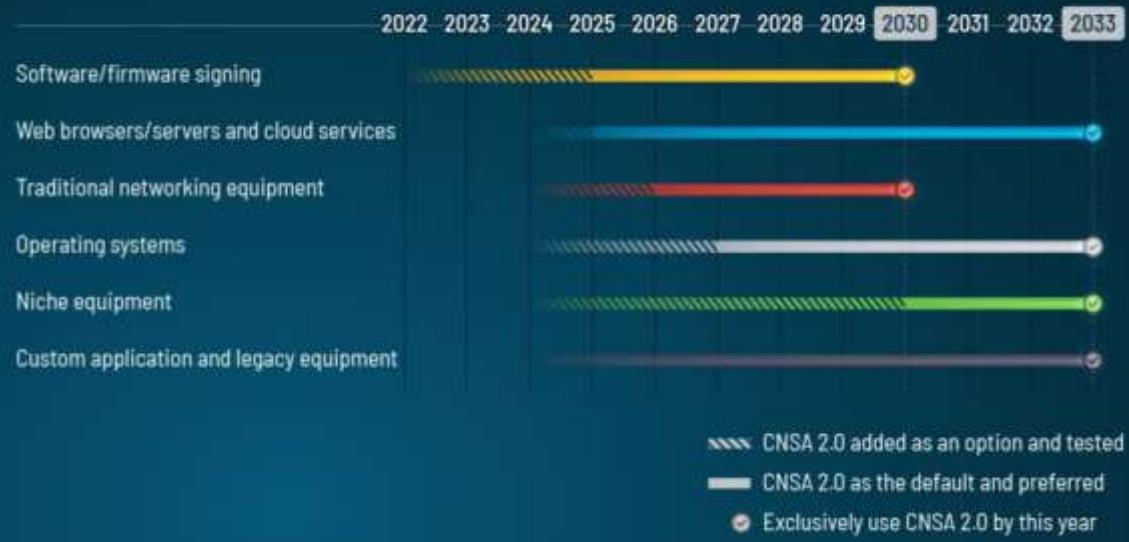
More ongoing and upcoming! FIPS 206, Round 4, On-Ramp, ISO, etc..

- [1] ML-KEM, <https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.203.pdf>
- [2] ML-DSA, <https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.204.pdf>
- [3] SLH-DSA, <https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.205.pdf>
- [4] LMS / XMSS, <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf>

PQC migration guidance

USA (NSA)

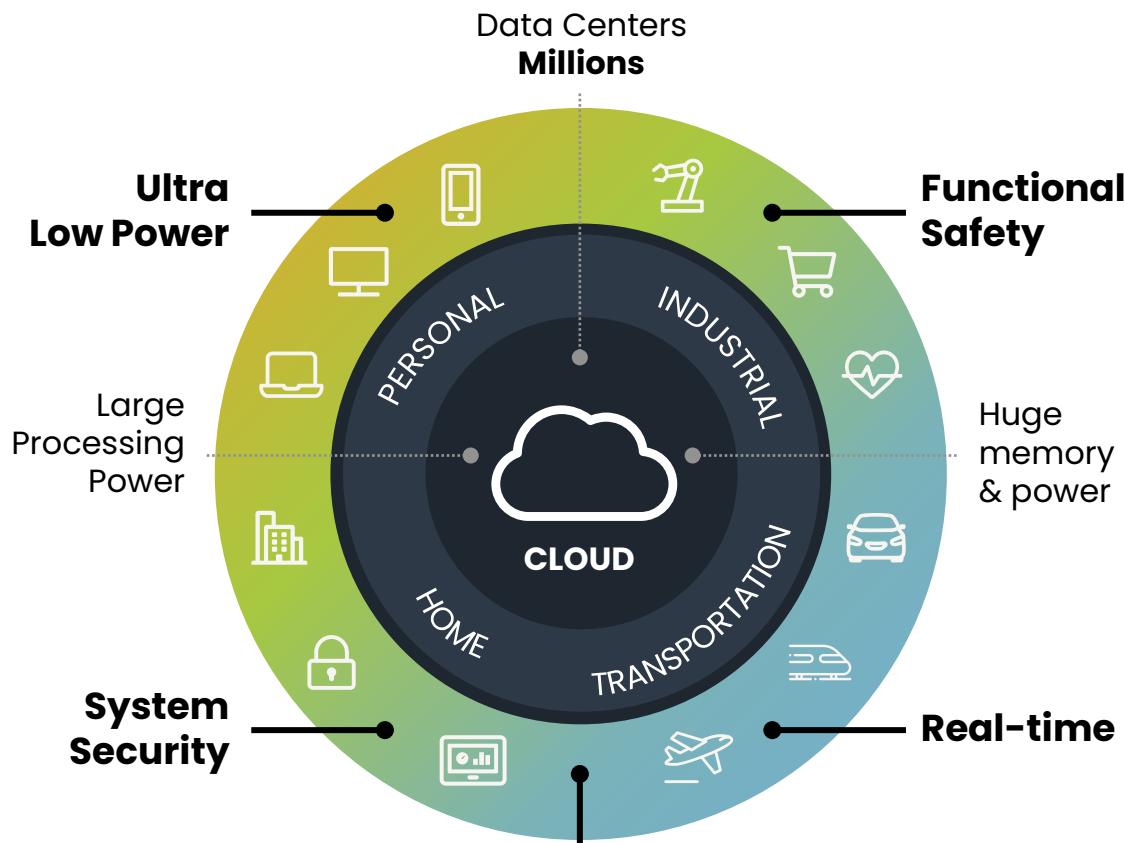
- [NSA recommendation](#) available
- Commercial National Security Algorithm Suite 2.0
- **Begin transitioning immediately**
- PQC FW signature supported **by 2025**
- PQC **transition complete by 2030** using SW update


Germany (BSI)

- [BSI first recommendation](#) (English)
- [BSI considerations](#) (German)
- Expectation is that beginning of 2030s, a relevant quantum computer is available to be a threat for high-secure applications
- "QKD is only suitable for specific use cases"

France (ANSSI)

- PQC [recommendations](#) for security products
- **"As soon as possible"** when long-lasting protection is required
- Others to **migrate to classic-PQC hybrid in 2025 – 2030**
- Switch to PQC-only expected by 2030


CNSA 2.0 Timeline

NIST IR 8547 (Initial Public Draft) Transition to Post-Quantum Cryptography Standards

Key Establishment Scheme	Parameters	Transition
Finite Field DH and MQV [SP80056A]	112 bits of security strength	Deprecated after 2030
	≥ 128 bits of security strength	Disallowed after 2035
Elliptic Curve DH and MQC [SP80056A]	112 bits of security strength	Deprecated after 2030
	≥ 128 bits of security strength	Disallowed after 2035
RSA [SP80056B]	112 bits of security strength	Deprecated after 2030
	≥ 128 bits of security strength	Disallowed after 2035

Impact PQC on our eco-system

No Silver Bullet

If a crypto scheme was better, we would have standardized this already

Cryptographic Keys

Orders of magnitude larger.

In the final: up to 1.3MB

Winners: up to 4.8KB
(ECC: 32 bytes, RSA: 384 bytes)

Performance

Varies: some faster some significantly slower.
SHA-3 is a dominating component (~80%)

Memory

Orders of magnitude more:

up 100KB memory of RAM when executing

NXP has dedicated implementations reaching ~16KB of RAM

Bandwidth & Power

Larger signatures (up to 4.6KB)

→ more bandwidth required

→ increase in power usage

Typical embedded use cases for new algorithms

Many more ongoing and upcoming!

↑ Security Goals ↓ Protocols ↑

	FIPS 203 ML-KEM	FIPS 204 ML-DSA	FIPS 205 (Verify) SLH-DSA	SP 800-208 (Verify) XMSS / LMS
Secure Boot	✓	✓	✓	✓
Secure Update	✓	✓	✓	✓
Secure Attestation	✗	✓	✗	✗
Secure Debug / Test	✓	✓	✗	✗
Certificates (PKI)	✗	✓	✓	✓**
Runtime Crypto API	✓	✓	✓	✓
TLS 1.3 (Hybrid)	✓	✓*	✗	✗
IKEv2 (Hybrid)	✓	✓*	✗	✗
GSMA eSIM	✓	✓	✗	✗
GlobalPlatform: TEE/MCU	✓	✓	✓	✓

* Signatures for client authentication excluded from initial proposals, discussions ongoing

** Possible but the number of issued certificates should be carefully managed (e.g., Root CA)

Hybrid migration

Transition Period

ECC / RSA benefit from decades of cryptanalysis including logical / physical attacks

Can combine security of both in a hybrid mode

Hybrid Signed Container

Image

ECC Sig.

ML-DSA Sig.

" NIST will **accommodate** the use of a hybrid key-establishment mode and dual signatures in FIPS 140 validation when suitably combined with a NIST-approved scheme "

" the BSI does not recommend using post-quantum cryptography alone, but **only "hybrid"** "

" the role of hybridation in the cryptographic security is crucial and will be **mandatory** for phases 1 and 2.

public key cryptography [...] would strongly benefit from the introduction of new alternative algorithms. "

Technical aspects of new algorithms

See pqm4 open source project for benchmarks! [A]
 Assuming Cortex-M4 @ 200 MHz software-only.
 For LMS numbers taken from Campos et al. [B]

Algorithm	PQC	Encaps	Decaps	SK	PK	CT	Algorithm
EC-P384	No	“Fast”	“Fast”	48 B	48 B	96 B	EC-P384
FIPS 203 (ML-KEM)	Yes	4 ms	4 ms	2 400 B	1 184 B	1 088 B	FIPS 203 (ML-KEM)

Algorithm	PQC	Encaps	Decaps	SK	PK	CT	Algorithm
ECDSA-P384	No	“Fast”	“Fast”	48 B	48 B	96 B	ECDSA-P384
FIPS 204 (ML-DSA)	Yes	31 ms	12 ms	4 032 B	1 952 B	3 309 B	FIPS 204 (ML-DSA)
FIPS 205 (SLH-DSA)***	Yes	77 s	68 ms	96 B	48 B	16 224 B	FIPS 205 (SLH-DSA)***
SP 800-20 (LMS/XMSS)	Yes	**(Stateful) 19 s	13 ms	48 B	48 B	1 860 B	SP 800-208 (LMS/XMSS)

* NIST Level 3 parameter sets

** Significant reduction possible by increasing memory consumption for state

*** New parameter sets coming that will improve performance & signature size!

What is the impact on the billions of embedded devices?

Automotive

70%

70% connected cars by 2025

Industrial & IoT

12B

IoT Edge & end nodes from **6B units** in 2021 to **12B units** in 2025

Mobile

60B

Tagging **60B products** per year by 2025

Communication Infrastructure

40B

Secure anchors & services for **40B processors**

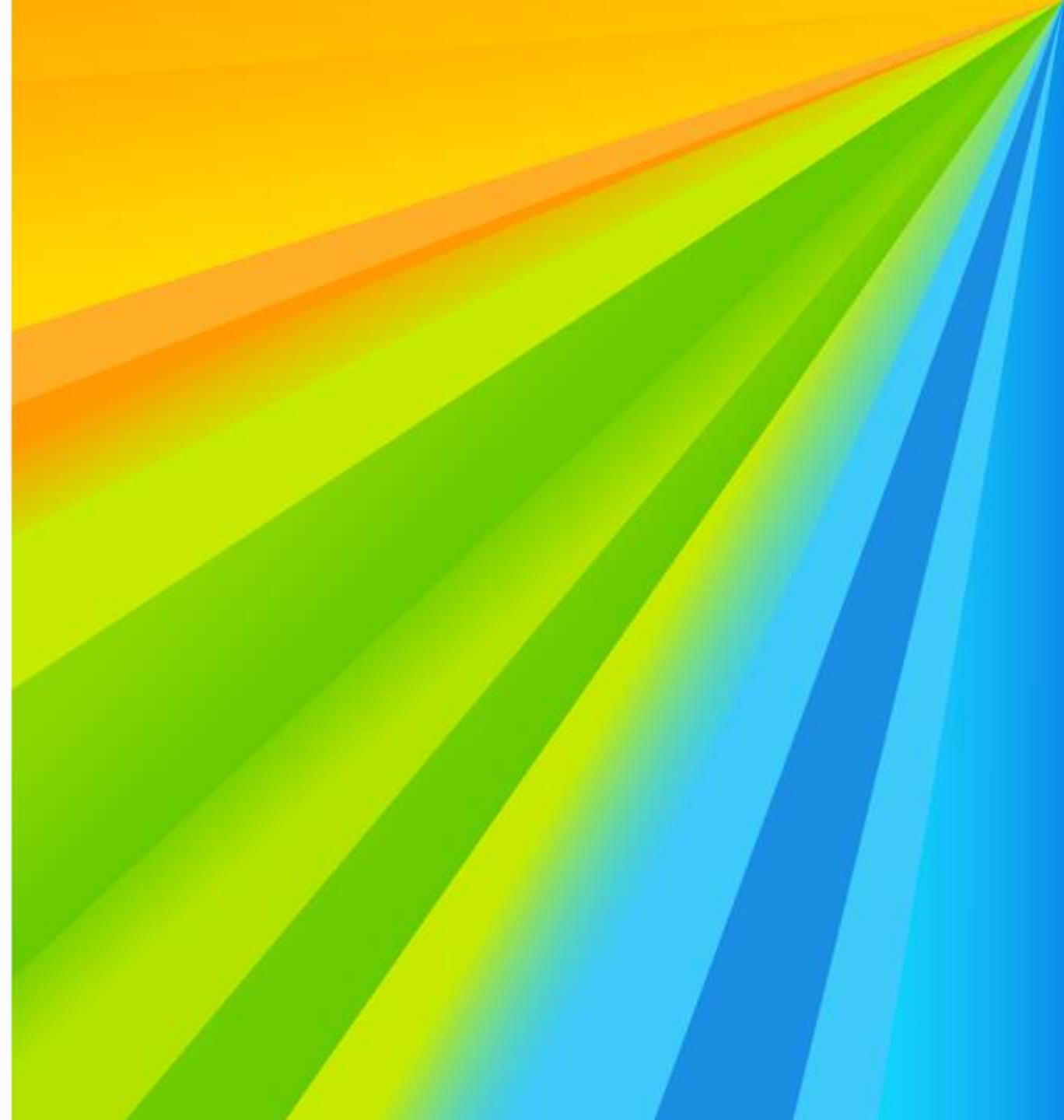
Automotive

eGovernment

Bank cards

Smart mobility
(MIFARE) cards

Tags &
Authentication



Readers

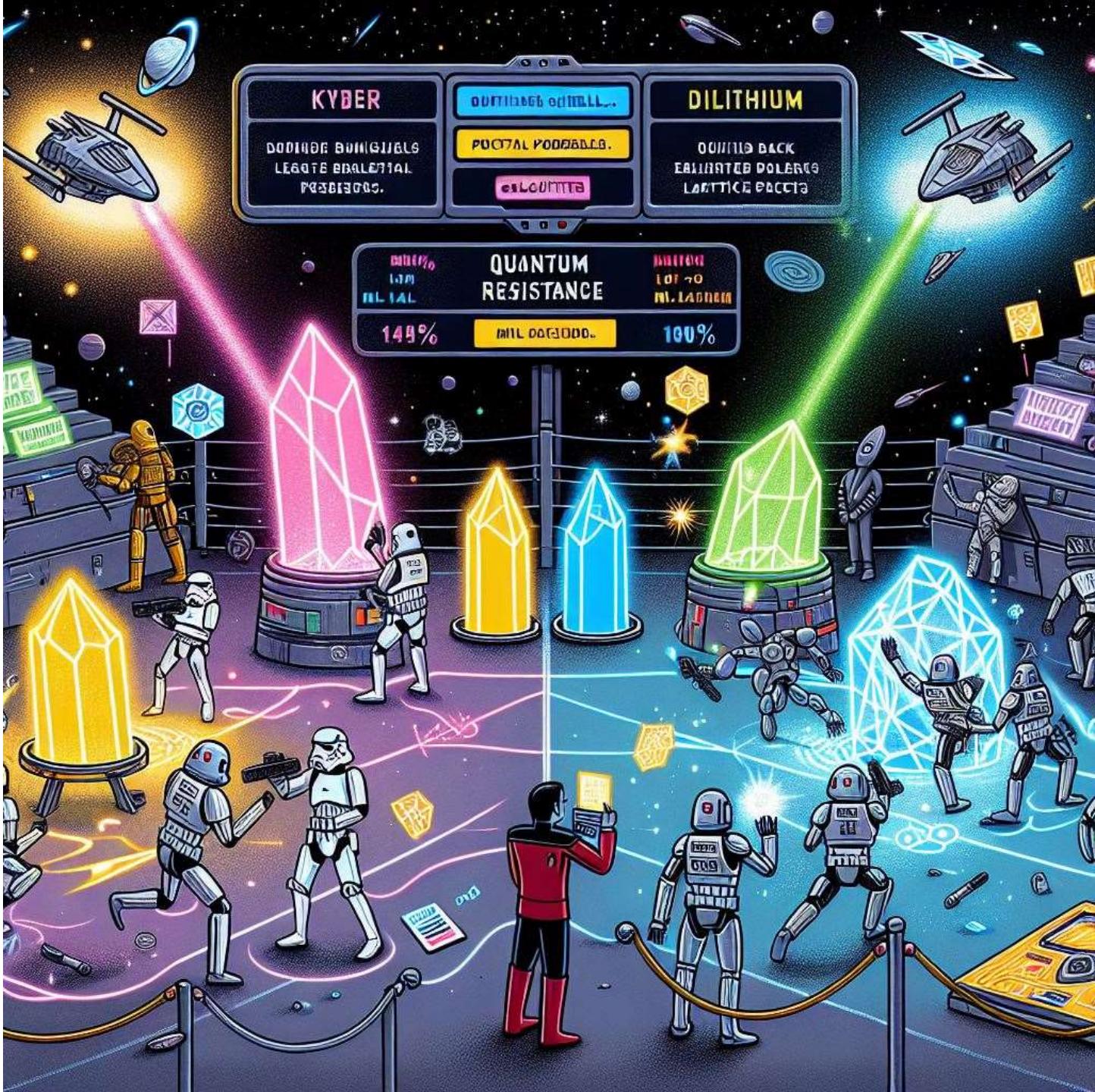
Mobile

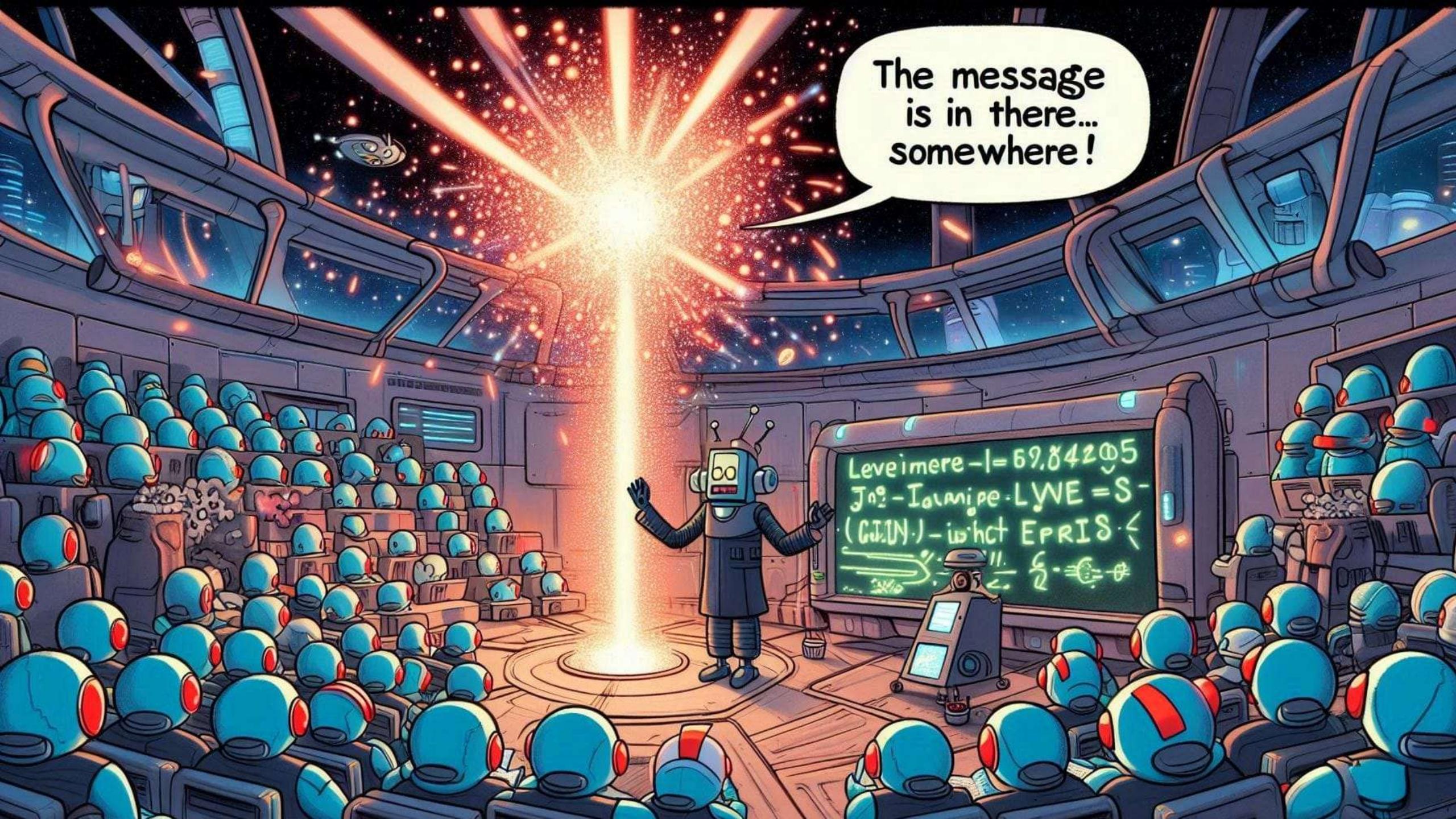
Learning with Errors

Cryptographic Suite for Algebraic Lattices (CRYSTALS)

The Cryptographic Suite for Algebraic Lattices (CRYSTALS) encompasses

- **Kyber**, a Key Encapsulation Mechanism (KEM) -> referred to in FIPS 203 as **ML-KEM**
- **Dilithium**, for Digital Signatures -> referred to in FIPS 204 as **ML-DSA**


Theory: same building blocks


- Module Learning with Errors
- Number-Theoretic Transformations

Many new techniques to deal with!

Kyber uses the 'Fujisaki-Okamoto Transform' to get strong security

Dilithium uses 'Rejection Sampling' as a core component for producing signatures

The message
is in there...
somewhere!

Leveimere-1=69.84205
Jn2-Iamige-LYNE=S-
(GJUN.)-what EPRIS <
S- E=0

Solving systems of linear equations

$$\begin{matrix} & \mathbb{Z}_{13}^{7 \times 4} & \times & \mathbb{Z}_{13}^{4 \times 1} & = & \mathbb{Z}_{13}^{7 \times 1} \\ \begin{matrix} 4 & 1 & 11 & 10 \\ 5 & 5 & 9 & 5 \\ 3 & 9 & 0 & 10 \\ 1 & 3 & 3 & 2 \\ 12 & 7 & 3 & 4 \\ 6 & 5 & 11 & 4 \\ 3 & 3 & 5 & 0 \end{matrix} & & \begin{matrix} \text{secret} \\ \mathbb{Z}_{13}^{4 \times 1} \end{matrix} & & \begin{matrix} 4 \\ 8 \\ 1 \\ 10 \\ 4 \\ 12 \\ 9 \end{matrix} & \end{matrix}$$

Linear system problem: given **blue**, find **red**

Solving systems of linear equations

$$\begin{array}{c} \text{Z}_{13}^{7 \times 4} \\ \times \quad \text{secret} \\ \text{Z}_{13}^{4 \times 1} \\ = \quad \text{Z}_{13}^{7 \times 1} \end{array}$$

4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

6
9
11
11

4
8
1
10
4
12
9

Easily solved using Gaussian elimination (Linear Algebra 101)

Linear system problem: given **blue**, find **red**

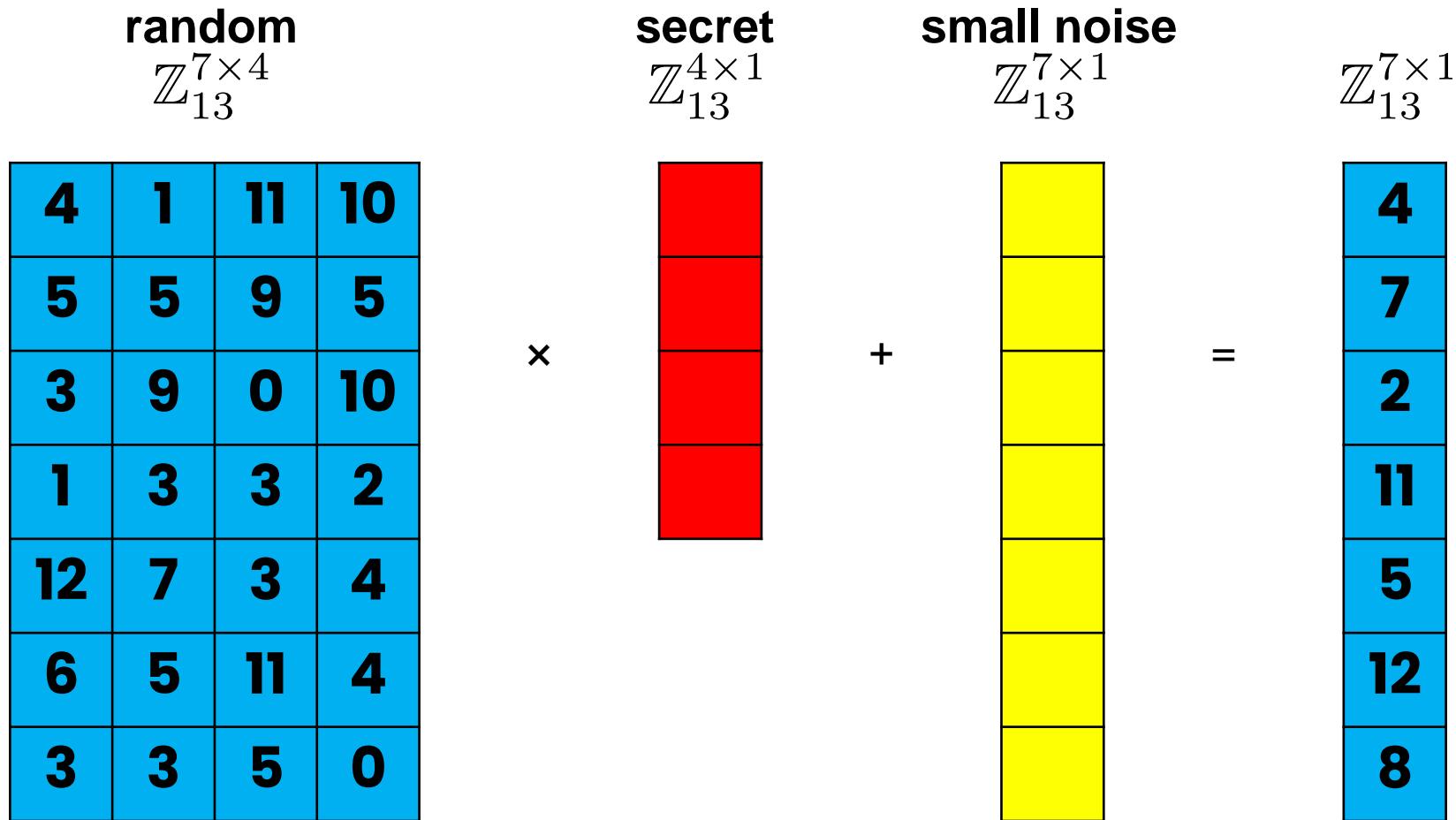
Learning with errors problem

random $\mathbb{Z}_{13}^{7 \times 4}$

4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

secret $\mathbb{Z}_{13}^{4 \times 1}$

6
9
11
11


small noise $\mathbb{Z}_{13}^{7 \times 1}$

0
-1
1
1
1
0
-1

\times + =

4
7
2
11
5
12
8

Learning with errors problem

Computational LWE problem: given blue, find red

Toy example versus real-world example

$\mathbb{Z}_{13}^{7 \times 4}$

4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

$\mathbb{Z}_{2^{15}}^{752 \times 8}$

2738	3842	3345	2979	...
2896	595	3607		
377	1575			
2760				
...				

$$752 \times 8 \times 15 \text{ bits} = 11 \text{ KiB}$$

Ring learning with errors problem

random
 $\mathbb{Z}_{13}^{7 \times 4}$

4	1	11	10
10	4	1	11
11	10	4	1
1	11	10	4
4	1	11	10
10	4	1	11
11	10	4	1

Each row is the cyclic shift of the row above

Ring learning with errors problem

random
 $\mathbb{Z}_{13}^{7 \times 4}$

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

Each row is the cyclic shift of the row above
...
with a special wrapping rule:
 x wraps to $-x \bmod 13$.

Ring learning with errors problem

random

$\mathbb{Z}_{13}^{7 \times 4}$

4	1	11	10
---	---	----	----

Each row is the cyclic shift of the row above

...

with a special wrapping rule:

x wraps to $-x \bmod 13$ ($\rightarrow \mathbb{Z}_{13}[x]/\langle x^4 + 1 \rangle$)

So I only need to tell you the first row.

Ring learning with errors problem

$$\mathbb{Z}_{13}[x]/\langle x^4 + 1 \rangle$$

$$4 + 1x + 11x^2 + 10x^3$$

random

$$6 + 9x + 11x^2 + 11x^3$$

secret

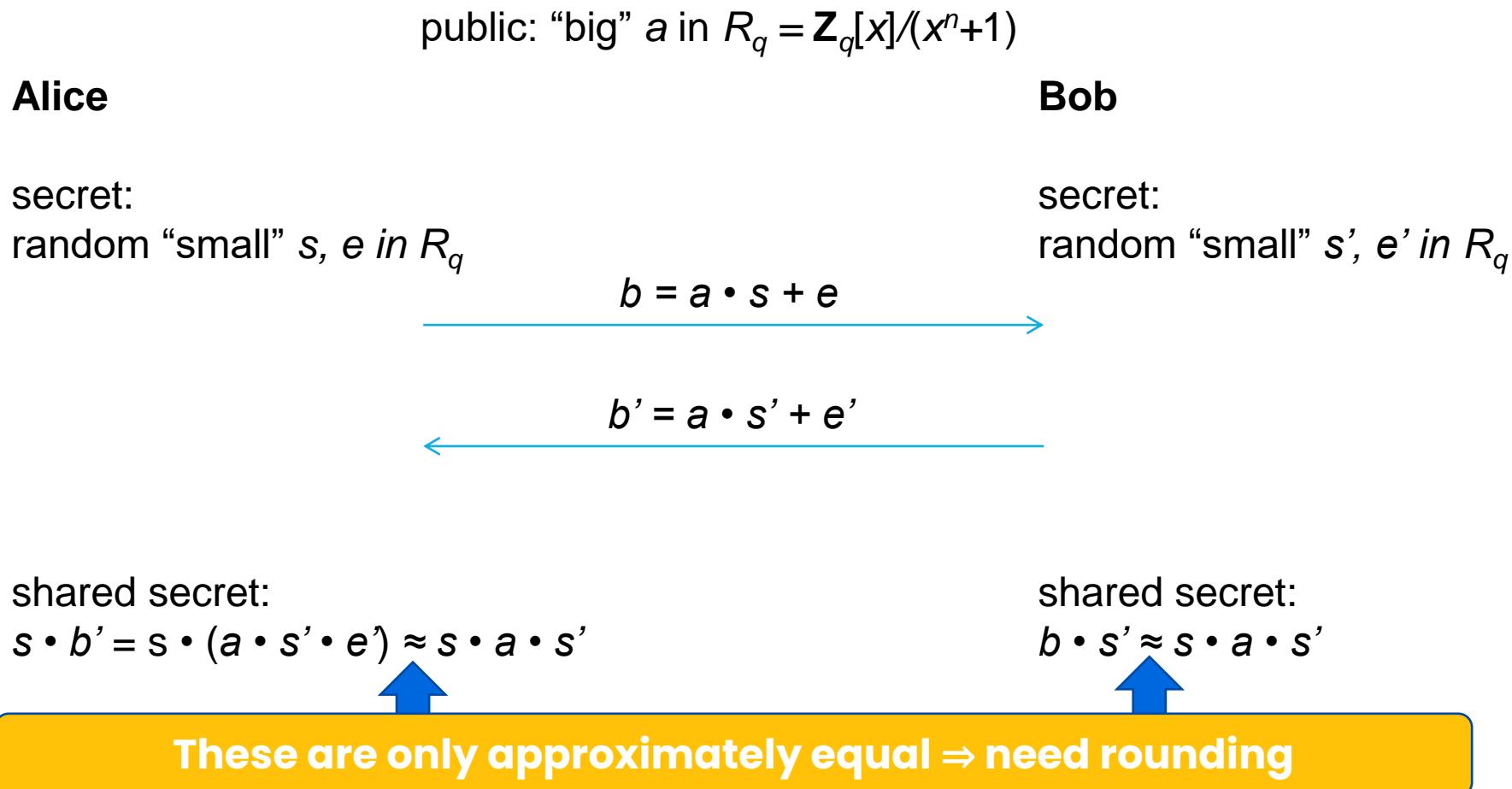
$$0 - 1x + 1x^2 + 1x^3$$

small noise

$$10 + 5x + 10x^2 + 7x^3$$

Ring learning with errors problem

Computational ring-LWE problem: given **blue**, find **red**


Algebraic variants of LWE

	Plain-LWE	Ring-LWE (cyclotomics)	Module-LWE
Number field K	\mathbf{Q}	$\mathbf{Q}(\zeta_m)$	General number field K
Ring \mathbf{R}	\mathbf{Z}	$\mathbf{Z}[\zeta_m] = \mathbf{Z}[X]/\Phi_m(X)$	\mathcal{O}_K (ring of integers)
Module rank d	n/a	1	$d > 1$
Ring dual \mathbf{R}^\vee	\mathbf{Z} (self-dual)	$\frac{1}{n}\mathbf{R}$	$\{x \in \mathbf{K} : \text{Tr}(xR) \subseteq \mathbf{Z}\}$
Secret $s \in$	\mathbf{Z}_q^n	\mathbf{R}_q^\vee	$(\mathbf{R}_q^\vee)^d$
Public $a \in$	\mathbf{Z}_q^n	\mathbf{R}_q	\mathbf{R}_q^d

Even more variants exist: Polynomial-LWE, order-LWE, middle-product-LWE

Basic ring-LWE-DH key agreement

- Reformulation of Peikert's ring-LWE KEM (*PQCrypto 2014*)

What is the impact of PQC on Industrial IoT?

SECURE ELEMENTS AND END-TO-END SERVICES

NXP propels today's on-the-go lifestyle with intelligent mobile solutions that safely connect consumers and their technology to the world around them.

SECURE ELEMENTS
AND END-TO-END
SERVICES

CUSTOM HIGH-
PERFORMANCE
INTERFACES

SMART VOICE,
AUDIO, AND HAPTIC
SOLUTIONS

EFFICIENT
CHARGING
SOLUTIONS

DEFINING WHAT'S NEXT FOR MOBILE PHONES

NXP has been driving the mobile wallet expansion, advancing analog and charging solutions add more capabilities to mobile phones, notebooks, and tablets.

- NFC, eSE, eSIM, and UWB solutions
- Advanced analog solutions for personal computing
- Fast charging with USB Type-C

WEARABLES

Thanks to secure mobile payments, advanced audio solutions and tailored MCUs, wearables naturally blend into our lives.

- NFC+eSE mobile wallet solutions
- Highly integrated Arm® based MPUs and MCUs
- MiGLO™ NFMI radios for wireless audio

ACCESSORIES

NXP's anti-counterfeiting technology, among others products, support charging cables, power adapters, and wireless charging pads for mobile phones to help OEMs protect their brand and provides safety to their customers by making trusted accessories.

INDUSTRIAL

Fit-for-purpose Scalable Processors

Functional Safety & Security

Industrial Connectivity & Control

Machine Learning & Vision

Comprehensive Software

PQC ON EMBEDDED DEVICES

What is embedded?

- NIST has recommended a focus on the Arm Cortex-M4

Pqm4: Post-quantum crypto library for the ARM Cortex-M4, STM32F4DISCOVERY

196 KiB of RAM and 1 MiB of Flash ROM

Low-power Edge computing: LPC800 Series

- 8 to 60 MHz Cortex-M0+ core
- { 4, 8, 16 } KiB of SRAM
- { 16, 32 } KiB Flash

The fastest implementations in pqm4 require

≈ 49, ≈ 80 and ≈ 116 KiB memory

for Dilithium-{2,3,5}.

DILITHIUM SIGNATURE GENERATION

Algorithm 2 Dilithium signature generation (taken from [18])

Input: Secret key sk and a message M .

Output: Signature $\sigma = \text{Sign}(sk, M)$.

```
1:  $\mathbf{A} \in R_q^{k \times \ell} := \text{ExpandA}(\rho)$                                 ▷  $\mathbf{A}$  is generated in NTT domain as  $\hat{\mathbf{A}}$ 
2:  $\mu \in \{0, 1\}^{512} := \mathsf{H}(tr \parallel M)$ 
3:  $\kappa := 0$ ,  $(\mathbf{z}, \mathbf{h}) := \perp$ 
4:  $\rho' \in \{0, 1\}^{512} := \mathsf{H}(K \parallel \mu)$  (or  $\rho' \leftarrow \{0, 1\}^{512}$  for randomized signing)
5: while  $(\mathbf{z}, \mathbf{h}) = \perp$  do          ▷ Pre-compute  $\hat{\mathbf{s}}_1 := \mathsf{NTT}(\mathbf{s}_1)$ ,  $\hat{\mathbf{s}}_2 := \mathsf{NTT}(\mathbf{s}_2)$ , and  $\hat{\mathbf{t}}_0 := \mathsf{NTT}(\mathbf{t}_0)$ 
6:    $\mathbf{y} \in S_{\gamma_1}^\ell := \text{ExpandMask}(\rho', \kappa)$ 
7:    $\mathbf{w} := \mathbf{A}\mathbf{y}$                                 ▷  $\mathbf{w} := \mathsf{NTT}^{-1}(\hat{\mathbf{A}} \cdot \mathsf{NTT}(\mathbf{y}))$ 
8:    $\mathbf{w}_1 := \text{HighBits}_q(\mathbf{w}, 2\gamma_2)$ 
9:    $\tilde{c} \in \{0, 1\}^{256} := \mathsf{H}(\mu \parallel \mathbf{w}_1)$ 
10:   $c \in B_\tau := \text{SampleInBall}(\tilde{c})$           ▷ Store  $c$  in NTT representation as  $\hat{c} = \mathsf{NTT}(c)$ 
11:   $\mathbf{z} := \mathbf{y} + c\mathbf{s}_1$                       ▷ Compute  $c\mathbf{s}_1$  as  $\mathsf{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_1)$ 
12:   $\mathbf{r}_0 := \text{LowBits}_q(\mathbf{w} - c\mathbf{s}_2, 2\gamma_2)$           ▷ Compute  $c\mathbf{s}_2$  as  $\mathsf{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_2)$ 
13:  if  $\|\mathbf{z}\|_\infty \geq \gamma_1 - \beta$  or  $\|\mathbf{r}_0\|_\infty \geq \gamma_2 - \beta$  then
14:     $(\mathbf{z}, \mathbf{h}) := \perp$ 
15:  else
16:     $\mathbf{h} := \text{MakeHint}_q(-c\mathbf{t}_0, \mathbf{w} - c\mathbf{s}_2 + c\mathbf{t}_0, 2\gamma_2)$           ▷ Compute  $c\mathbf{t}_0$  as  $\mathsf{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{t}}_0)$ 
17:    if  $\|c\mathbf{t}_0\|_\infty \geq \gamma_2$  or the # of 1's in  $\mathbf{h}$  is greater than  $\omega$  then
18:       $(\mathbf{z}, \mathbf{h}) := \perp$ 
19:     $\kappa := \kappa + \ell$ 
20: return  $\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$ 
```

DILITHIUM SIGNATURE GENERATION

Algorithm 2 Dilithium signature generation (taken from [18])

Input: Secret key sk and a message M .

Output: Signature $\sigma = \text{Sign}(sk, M)$.

```
1:  $\mathbf{A} \in R_q^{k \times \ell} := \text{ExpandA}(\rho)$                                 ▷  $\mathbf{A}$  is generated in NTT domain as  $\hat{\mathbf{A}}$ 
2:  $\mu \in \{0, 1\}^{512} := \mathbf{H}(tr \parallel M)$ 
3:  $\kappa := 0$ ,  $(\mathbf{z}, \mathbf{h}) := \perp$ 
4:  $\rho' \in \{0, 1\}^{512} := \mathbf{H}(K \parallel \mu)$  (or  $\rho' \leftarrow \{0, 1\}^{512}$  for randomized signing)
5: while  $(\mathbf{z}, \mathbf{h}) = \perp$  do          ▷ Pre-compute  $\hat{\mathbf{s}}_1 := \text{NTT}(\mathbf{s}_1)$ ,  $\hat{\mathbf{s}}_2 := \text{NTT}(\mathbf{s}_2)$ , and  $\hat{\mathbf{t}}_0 := \text{NTT}(\mathbf{t}_0)$ 
6:    $\mathbf{y} \in S_{\gamma_1}^\ell := \text{ExpandMask}(\rho', \kappa)$                                 ▷  $\mathbf{w} := \text{NTT}^{-1}(\hat{\mathbf{A}} \cdot \text{NTT}(\mathbf{y}))$ 
7:    $\mathbf{w} := \mathbf{A}\mathbf{y}$ 
8:    $\mathbf{w}_1 := \text{HighBits}_q(\mathbf{w}, 2\gamma_2)$ 
9:    $\tilde{c} \in \{0, 1\}^{256} := \mathbf{H}(\mu \parallel \mathbf{w}_1)$ 
10:   $c \in B_\tau := \text{SampleInBall}(\tilde{c})$                                 ▷ Store  $c$  in NTT representation as  $\hat{c} = \text{NTT}(c)$ 
11:   $\mathbf{z} := \mathbf{y} + c\mathbf{s}_1$                                 ▷ Compute  $c\mathbf{s}_1$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_1)$ 
12:   $\mathbf{r}_0 := \text{LowBits}_q(\mathbf{w} - c\mathbf{s}_2, 2\gamma_2)$                                 ▷ Compute  $c\mathbf{s}_2$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_2)$ 
13:  if  $\|\mathbf{z}\|_\infty \geq \gamma_1 - \beta$  or  $\|\mathbf{r}_0\|_\infty \geq \gamma_2 - \beta$  then
14:     $(\mathbf{z}, \mathbf{h}) := \perp$ 
15:  else
16:     $\mathbf{h} := \text{MakeHint}_q(-c\mathbf{t}_0, \mathbf{w} - c\mathbf{s}_2 + c\mathbf{t}_0, 2\gamma_2)$           ▷ Compute  $c\mathbf{t}_0$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{t}}_0)$ 
17:    if  $\|c\mathbf{t}_0\|_\infty \geq \gamma_2$  or the # of 1's in  $\mathbf{h}$  is greater than  $\omega$  then
18:       $(\mathbf{z}, \mathbf{h}) := \perp$ 
19:     $\kappa := \kappa + \ell$ 
20: return  $\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$ 
```

Polynomials from

$$R_q = \mathbb{Z}_q[X]/(X^{256} + 1)$$

where $q = 2^{23} - 2^{13} + 1$ and stored as 32-bit values.

→ One R_q elements needs 1KB

Dilithium-3: $(k, \ell) = (6, 5)$

DILITHIUM SIGNATURE GENERATION

Algorithm 2 Dilithium signature generation (taken from [18])

Input: Secret key sk and a message M .

Output: Signature $\sigma = \text{Sign}(sk, M)$.

```

1:  $\hat{\mathbf{A}} \in R_q^{k \times \ell} := \text{ExpandA}(\rho)$                                 ▷  $\hat{\mathbf{A}}$  is generated in NTT domain as  $\hat{\mathbf{A}}$ 
2:  $\mu \in \{0, 1\}^{512} := H(\mu' \parallel M)$ 
3:  $\kappa := 0$ ,  $(\mathbf{z}, \mathbf{h}) := \perp$ 
4:  $\rho' \in \{0, 1\}^{512} := H(K \parallel \mu)$  (or  $\rho' \leftarrow \{0, 1\}^{512}$  for randomized signing)
5: while  $(\mathbf{z}, \mathbf{h}) = \perp$  do                                                 Pre-compute  $\hat{\mathbf{s}}_1 := \text{NTT}(\mathbf{s}_1)$ ,  $\hat{\mathbf{s}}_2 := \text{NTT}(\mathbf{s}_2)$ , and  $\hat{\mathbf{t}}_0 := \text{NTT}(\mathbf{t}_0)$ 
6:    $\mathbf{y} \in S_{\gamma_1}^\ell := \text{ExpandMask}(\rho', \kappa)$                                 ▷  $\mathbf{w} := \text{NTT}^{-1}(\hat{\mathbf{A}} \cdot \text{NTT}(\mathbf{y}))$ 
7:    $\mathbf{w} := \mathbf{A}\mathbf{y}$ 
8:    $\mathbf{w}_1 := \text{HighBits}_q(\mathbf{w}, 2\gamma_2)$ 
9:    $\tilde{c} \in \{0, 1\}^{256} := H(\mu \parallel \mathbf{w}_1)$ 
10:   $c \in B_\tau := \text{SampleInBall}(\tilde{c})$                                          ▷ Store  $c$  in NTT representation as  $\hat{c} = \text{NTT}(c)$ 
11:   $\mathbf{z} := \mathbf{y} + c\mathbf{s}_1$                                                  ▷ Compute  $c\mathbf{s}_1$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_1)$ 
12:   $\mathbf{r}_0 := \text{LowBits}_q(\mathbf{w} - c\mathbf{s}_2, 2\gamma_2)$                                 ▷ Compute  $c\mathbf{s}_2$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_2)$ 
13:  if  $\|\mathbf{z}\|_\infty \geq \gamma_1 - \beta$  or  $\|\mathbf{r}_0\|_\infty \geq \gamma_2 - \beta$  then
14:     $(\mathbf{z}, \mathbf{h}) := \perp$ 
15:  else
16:     $\mathbf{h} := \text{MakeHint}_q(-c\mathbf{t}_0, \mathbf{w} - c\mathbf{s}_2 + c\mathbf{t}_0, 2\gamma_2)$           ▷ Compute  $c\mathbf{t}_0$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{t}}_0)$ 
17:    if  $\|c\mathbf{t}_0\|_\infty \geq \gamma_2$  or the # of 1's in  $\mathbf{h}$  is greater than  $\omega$  then
18:       $(\mathbf{z}, \mathbf{h}) := \perp$ 
19:     $\kappa := \kappa + \ell$ 
20:  return  $\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$ 

```

Polynomials from

$$R_q = \mathbb{Z}_q[X]/(X^{256} + 1)$$

where $q = 2^{23} - 2^{13} + 1$ and stored as 32-bit values.

→ One R_q elements needs **1KB**

Dilithium-3: $(k, \ell) = (6, 5)$

(Re-)generate matrix A and y on-the-fly

- Reduce by $k \cdot \ell$ KB for A
→ **30 KB**
- Reduce by ℓ KB for y
→ **5 KB**

DILITHIUM SIGNATURE GENERATION

Algorithm 2 Dilithium signature generation (taken from [18])

Input: Secret key sk and a message M .

Output: Signature $\sigma = \text{Sign}(sk, M)$.

```

1:  $\mathbf{A} \in R_q^{k \times \ell} := \text{ExpandA}(\rho)$                                 ▷  $\mathbf{A}$  is generated in NTT domain as  $\hat{\mathbf{A}}$ 
2:  $\mu \in \{0, 1\}^{512} := \mathbf{H}(tr \parallel M)$ 
3:  $\kappa := 0$ ,  $(\mathbf{z}, \mathbf{h}) := \perp$ 
4:  $\rho' \in \{0, 1\}^{512} := \mathbf{H}(K \parallel \mu)$  (or  $\rho' \leftarrow \{0, 1\}^{512}$  for randomized signing)
5: while  $(\mathbf{z}, \mathbf{h}) = \perp$  do          ▷ Pre-compute  $\hat{\mathbf{s}}_1 := \text{NTT}(\mathbf{s}_1)$ ,  $\hat{\mathbf{s}}_2 := \text{NTT}(\mathbf{s}_2)$ , and  $\hat{\mathbf{t}}_0 := \text{NTT}(\mathbf{t}_0)$ 
6:    $\mathbf{y} \in S_{\gamma_1}^\ell := \text{ExpandMask}(\rho', \kappa)$ 
7:    $\mathbf{w} := \mathbf{A}\mathbf{y}$                                 ▷  $\mathbf{w} := \text{NTT}^{-1}(\hat{\mathbf{A}} \cdot \text{NTT}(\mathbf{y}))$ 
8:    $\mathbf{w}_1 := \text{HighBits}_q(\mathbf{w}, 2\gamma_2)$ 
9:    $\tilde{c} \in \{0, 1\}^{256} := \mathbf{H}(\mu \parallel \mathbf{w}_1)$ 
10:   $c \in \mathcal{B}_\tau := \text{SampleInBall}(c)$           ▷ Store  $c$  in NTT representation as  $\hat{c} = \text{NTT}(c)$ 
11:   $\mathbf{z} := \mathbf{v} + c\mathbf{s}_1$                       ▷ Compute  $c\mathbf{s}_1$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_1)$ 
12:   $\mathbf{r}_0 := \text{LowBits}_q(\mathbf{w} - c\mathbf{s}_2, 2\gamma_2)$     ▷ Compute  $c\mathbf{s}_2$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_2)$ 
13:  if  $\|\mathbf{z}\|_\infty \geq \gamma_1 - \beta$  or  $\|\mathbf{r}_0\|_\infty \geq \gamma_2 - \beta$  then
14:     $(\mathbf{z}, \mathbf{h}) := \perp$ 
15:  else
16:     $\mathbf{h} := \text{MakeHint}_q(-c\mathbf{t}_0, \mathbf{w} - c\mathbf{s}_2 + c\mathbf{t}_0, 2\gamma_2)$     ▷ Compute  $c\mathbf{t}_0$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{t}}_0)$ 
17:    if  $\|c\mathbf{t}_0\|_\infty \geq \gamma_2$  or the # of 1's in  $\mathbf{h}$  is greater than  $\omega$  then
18:       $(\mathbf{z}, \mathbf{h}) := \perp$ 
19:     $\kappa := \kappa + \ell$ 
20:  return  $\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$ 

```

Polynomials from

$$R_q = \mathbb{Z}_q[X]/(X^{256} + 1)$$

where $q = 2^{23} - 2^{13} + 1$ and stored as 32-bit values.

→ One R_q elements needs 1KB

Dilithium-3: $(k, \ell) = (6, 5)$

(Re-)generate matrix \mathbf{A} and \mathbf{y}
on-the-fly: 80, 45 KB

Compress \mathbf{w}

- Store values as 24-bit
- One R_q elements needs 768 bytes
- Packing and unpacking is simple and efficient
- Reduces memory by Reduce by 256k bytes → 1.5 KB

DILITHIUM SIGNATURE GENERATION

Algorithm 2 Dilithium signature generation (taken from [18])

Input: Secret key sk and a message M .

Output: Signature $\sigma = \text{Sign}(sk, M)$.

```

1:  $\mathbf{A} \in R_q^{k \times \ell} := \text{ExpandA}(\rho)$                                 ▷  $\mathbf{A}$  is generated in NTT domain as  $\hat{\mathbf{A}}$ 
2:  $\mu \in \{0, 1\}^{512} := \mathbf{H}(tr \parallel M)$ 
3:  $\kappa := 0$ ,  $(\mathbf{z}, \mathbf{h}) := \perp$ 
4:  $\rho' \in \{0, 1\}^{512} := \mathbf{H}(K \parallel \mu)$  (or  $\rho' \leftarrow \{0, 1\}^{512}$  for randomized signing)
5: while  $(\mathbf{z}, \mathbf{h}) = \perp$  do          ▷ Pre-compute  $\hat{\mathbf{s}}_1 := \text{NTT}(\mathbf{s}_1)$ ,  $\hat{\mathbf{s}}_2 := \text{NTT}(\mathbf{s}_2)$ , and  $\hat{\mathbf{t}}_0 := \text{NTT}(\mathbf{t}_0)$ 
6:    $\mathbf{y} \in S_{\gamma_1}^\ell := \text{ExpandMask}(\rho', \kappa)$ 
7:    $\mathbf{w} := \mathbf{A}\mathbf{y}$                                 ▷  $\mathbf{w} := \text{NTT}^{-1}(\hat{\mathbf{A}} \cdot \text{NTT}(\mathbf{y}))$ 
8:    $\mathbf{w}_1 := \text{HighBits}_q(\mathbf{w}, 2\gamma_2)$ 
9:    $\tilde{c} \in \{0, 1\}^{256} := \mathbf{H}(\mu \parallel \mathbf{w}_1)$ 
10:   $c \in B_- := \text{SampleInBall}(\tilde{c})$           ▷ Store  $c$  in NTT representation as  $\hat{c} = \text{NTT}(c)$ 
11:   $\mathbf{z} := \mathbf{y} + c\mathbf{s}_1$                       ▷ Compute  $c\mathbf{s}_1$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_1)$ 
12:   $\mathbf{r}_0 := \text{LowBits}_q(\mathbf{w} - c\mathbf{s}_1, 2\gamma_2)$   ▷ Compute  $c\mathbf{s}_2$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_2)$ 
13:  if  $\|\mathbf{z}\|_\infty \geq \gamma_1 - \beta$  or  $\|\mathbf{r}_0\|_\infty \geq \gamma_2 - \beta$  then
14:     $(\mathbf{z}, \mathbf{h}) := \perp$ 
15:  else
16:     $\mathbf{h} := \text{MakeHint}_q(-c\mathbf{t}_0, \mathbf{w} - c\mathbf{s}_2 + c\mathbf{t}_0, 2\gamma_2)$           ▷ Compute  $c\mathbf{t}_0$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{t}}_0)$ 
17:    if  $\|c\mathbf{t}_0\|_\infty \geq \gamma_2$  or the # of 1's in  $\mathbf{h}$  is greater than  $\omega$  then
18:       $(\mathbf{z}, \mathbf{h}) := \perp$ 
19:     $\kappa := \kappa + \ell$ 
20: return  $\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$ 

```

Polynomials from

$$R_q = \mathbb{Z}_q[X]/(X^{256} + 1)$$

where $q = 2^{23} - 2^{13} + 1$ and stored as 32-bit values.

→ One R_q elements needs **1KB**

Dilithium-3: $(k, \ell) = (6, 5)$

(Re-)generate matrix \mathbf{A} and \mathbf{y}
on-the-fly: ~~80 KB~~ → 45 KB

Compress \mathbf{w} : 45 KB → 43.5 KB

Compressing multiplications

- NTT used for faster polynomial multiplication
- Secret key coefficient range is much smaller
- Not using NTT reduces by $2k + \ell$ KB → **17 KB**

DILITHIUM SIGNATURE GENERATION

Algorithm 2 Dilithium signature generation (taken from [18])

Input: Secret key sk and a message M .

Output: Signature $\sigma = \text{Sign}(sk, M)$.

```

1:  $\mathbf{A} \in R_q^{k \times \ell} := \text{ExpandA}(\rho)$                                 ▷  $\mathbf{A}$  is generated in NTT domain as  $\hat{\mathbf{A}}$ 
2:  $\mu \in \{0, 1\}^{512} := \mathbf{H}(tr \parallel M)$ 
3:  $\kappa := 0$ ,  $(\mathbf{z}, \mathbf{h}) := \perp$ 
4:  $\rho' \in \{0, 1\}^{512} := \mathbf{H}(K \parallel \mu)$  (or  $\rho' \leftarrow \{0, 1\}^{512}$  for randomized signing)
5: while  $(\mathbf{z}, \mathbf{h}) = \perp$  do          ▷ Pre-compute  $\hat{\mathbf{s}}_1 := \text{NTT}(\mathbf{s}_1)$ ,  $\hat{\mathbf{s}}_2 := \text{NTT}(\mathbf{s}_2)$ , and  $\hat{\mathbf{t}}_0 := \text{NTT}(\mathbf{t}_0)$ 
6:    $\mathbf{y} \in S_{\gamma_1}^\ell := \text{ExpandMask}(\rho', \kappa)$                                 ▷  $\mathbf{w} := \text{NTT}^{-1}(\hat{\mathbf{A}} \cdot \text{NTT}(\mathbf{y}))$ 
7:    $\mathbf{w} := \mathbf{A}\mathbf{y}$ 
8:    $\mathbf{w}_1 := \text{HighBits}_q(\mathbf{w}, 2\gamma_2)$ 
9:    $\tilde{c} \in \{0, 1\}^{256} := \mathbf{H}(\mu \parallel \mathbf{w}_1)$ 
10:   $c \in B_- := \text{SampleInBall}(\tilde{c})$                                          ▷ Store  $c$  in NTT representation as  $\hat{c} = \text{NTT}(c)$ 
11:   $\mathbf{z} := \mathbf{y} + c\mathbf{s}_1$                                               ▷ Compute  $c\mathbf{s}_1$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_1)$ 
12:   $\mathbf{r}_0 := \text{LowBits}_q(\mathbf{w} - c\mathbf{s}_1, 2\gamma_2)$                                 ▷ Compute  $c\mathbf{s}_2$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{s}}_2)$ 
13:  if  $\|\mathbf{z}\|_\infty \geq \gamma_1 - \beta$  or  $\|\mathbf{r}_0\|_\infty \geq \gamma_2 - \beta$  then
14:     $(\mathbf{z}, \mathbf{h}) := \perp$ 
15:  else
16:     $\mathbf{h} := \text{MakeHint}_q(-c\mathbf{t}_0, \mathbf{w} - c\mathbf{s}_2 + c\mathbf{t}_0, 2\gamma_2)$           ▷ Compute  $c\mathbf{t}_0$  as  $\text{NTT}^{-1}(\hat{c} \cdot \hat{\mathbf{t}}_0)$ 
17:    if  $\|c\mathbf{t}_0\|_\infty \geq \gamma_2$  or the # of 1's in  $\mathbf{h}$  is greater than  $\omega$  then
18:       $(\mathbf{z}, \mathbf{h}) := \perp$ 
19:     $\kappa := \kappa + \ell$ 
20:  return  $\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$ 

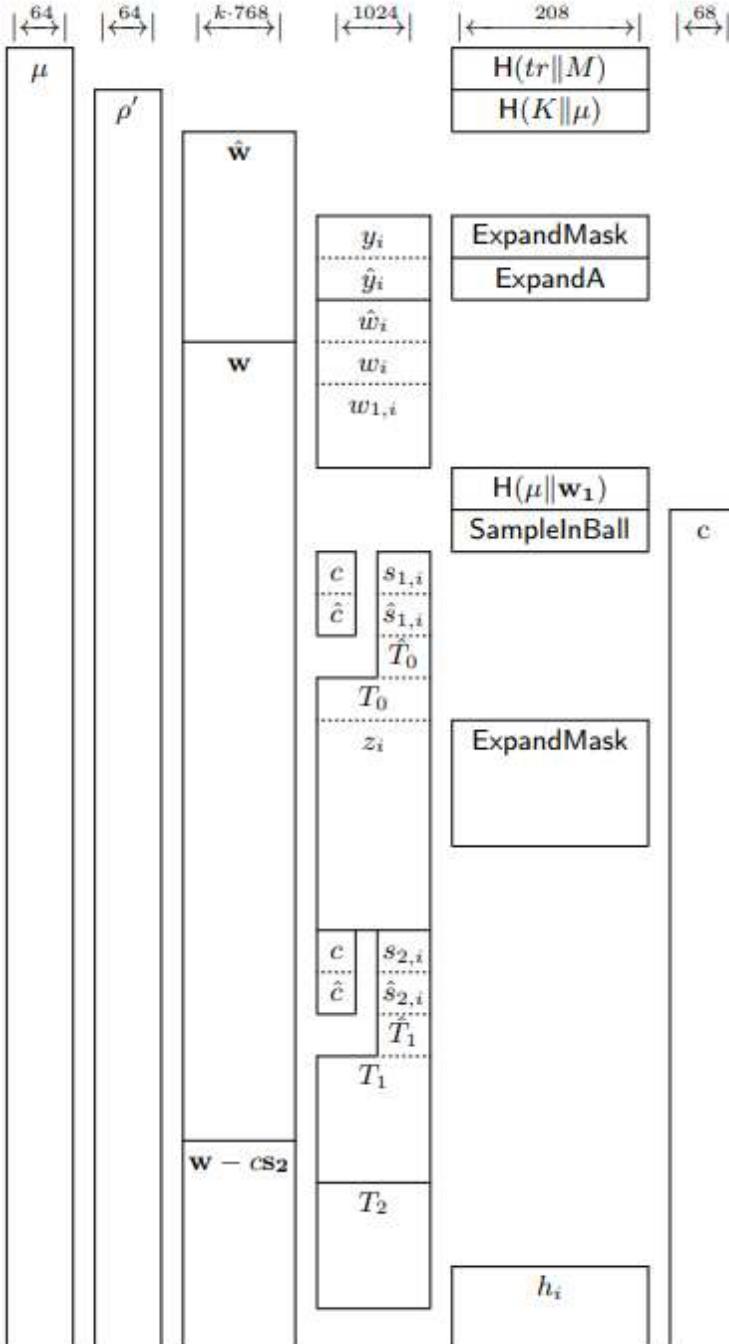
```

Polynomials from

$$R_q = \mathbb{Z}_q[X]/(X^{256} + 1)$$

where $q = 2^{23} - 2^{13} + 1$ and stored as 32-bit values.

→ One R_q elements needs 1KB


Dilithium-3: $(k, \ell) = (6, 5)$

(Re-)generate matrix A and y
on-the-fly: 80 KB → 45 KB

Compress w: 45 KB → 43.5 KB

Compressing multiplications
43.5 KB → 26.5 KB

Variable Allocation

Algorithmic steps:

- $\mu := \mathbf{H}(tr\|M)$
- $\rho' := \mathbf{H}(K\|\mu)$
- $\hat{\mathbf{w}} := 0$
- reject:**
 - $0 \leq i < \ell$:
 $y_i := \mathbf{ExpandMask}(\rho', \kappa)$
 $\hat{y}_i := \mathbf{NTT}(y_i)$
 $\hat{w}_j := \hat{w}_j + \hat{A}_{j,i} \circ \hat{y}_i$ **for** $0 \leq j < k$
 $w_i := \mathbf{NTT}^{-1}(\hat{w}_i)$
 $w_{1,i} := \mathbf{Highbits}(w_i)$
▷ store packed \mathbf{w}_1 in output buffer
 $\tilde{c} := \mathbf{H}(\mu\|\mathbf{w}_1)$ **▷ write \tilde{c} to signature**
 $c := \mathbf{SampleInBall}(\tilde{c})$
▷ make 16-bit c and $s_{1,i}$ polynomials
 $\hat{c} := \mathbf{NTT}_{q'}(c); \hat{s}_{1,i} = \mathbf{NTT}_{q'}(s_{1,i})$
 $\hat{T}_0 := \hat{c} \circ \hat{s}_{1,i}$
 $T_0 := \mathbf{NTT}_{q'}^{-1}(\hat{T}_0)$
▷ sample (using $\mathbf{ExpandMask}$) and add y_i on-the-fly
 $z_i := T_0 + y_i$
check $\|z_i\|_\infty < \gamma_1 - \beta$
write z_i to signature
 $0 \leq i < k$:
▷ make 16-bit c and $s_{2,i}$ polynomials
 $\hat{c} := \mathbf{NTT}_{q'}(c); \hat{s}_{2,i} = \mathbf{NTT}_{q'}(s_{2,i})$
 $\hat{T}_1 := \hat{c} \circ \hat{s}_{2,i}$
 $T_1 := \mathbf{NTT}_{q'}^{-1}(\hat{T}_1)$
check $\|\mathbf{LowBits}_q(w_i - T_1, 2\gamma_2)\|_\infty < \gamma_2 - \beta$
 $w_i - cs_{2,i} := w_i - T_1$
 $T_2 := c \cdot t_{0,i}$ **▷ schoolbook multiplication**
check $\|T_2\|_\infty < \gamma_2$
 $h_i := \mathbf{MakeHint}(-T_2, w_i - cs_{2,i} + T_2, 2\gamma_2)$
write h_i to output

(Re-)generate matrix A and y on-the-fly: ~~80 KB~~ \rightarrow 45 KB

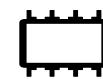
Compress w: ~~45 KB~~ \rightarrow 43.5 KB

Compressing multiplications
~~43.5 KB~~ \rightarrow 26.5 KB

Variable Allocation:

Total of

$64 + 64 + 768k + 1024 + 208 + 68$ bytes \rightarrow **5268 bytes**


In practice: 6.5 KB needed

From Theory to Practice: Small-Memory Implementations

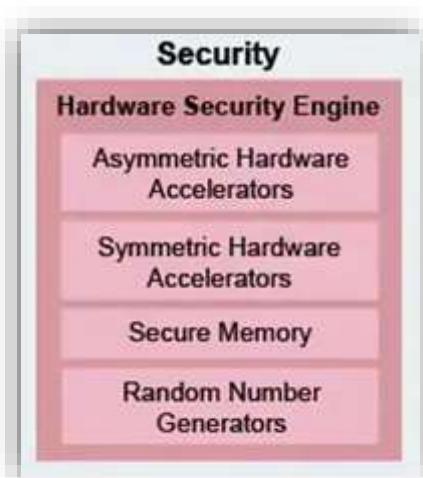
Do these implementations actually run on embedded systems?

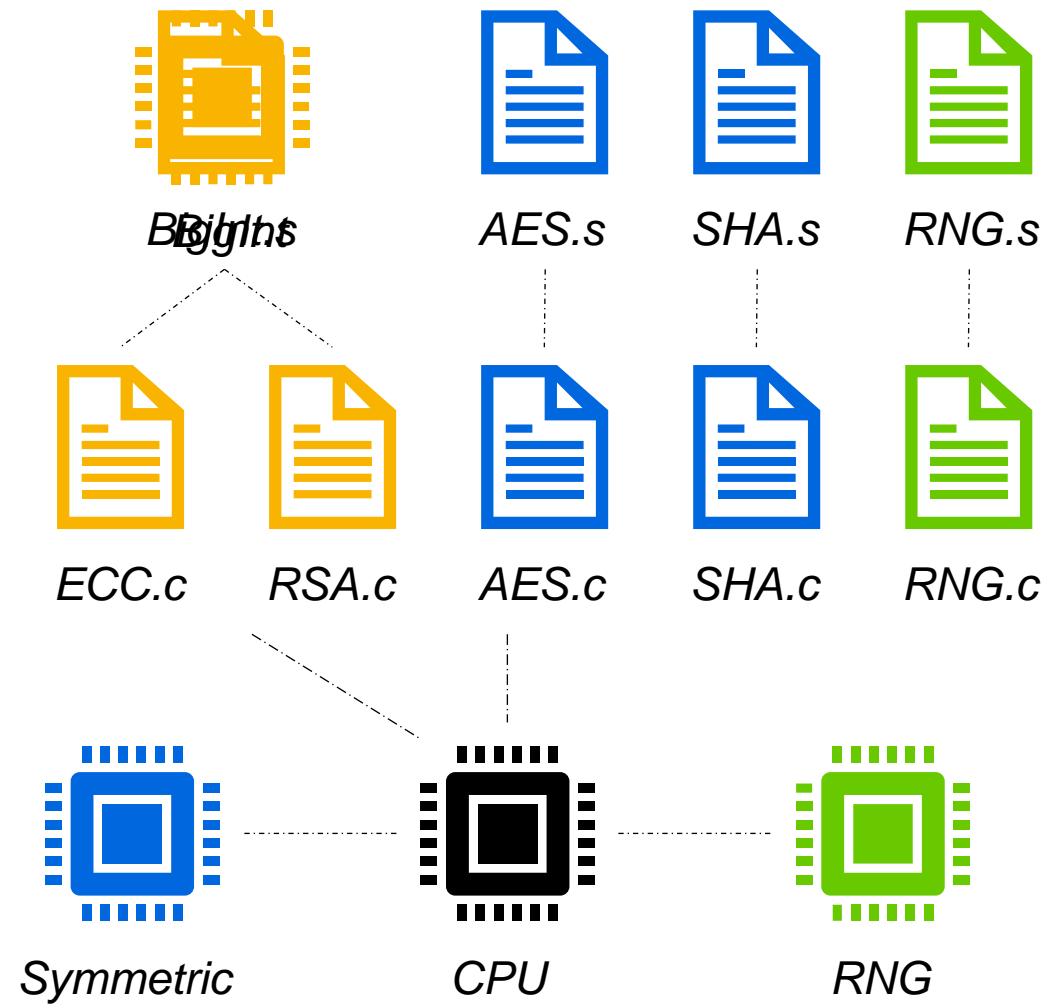
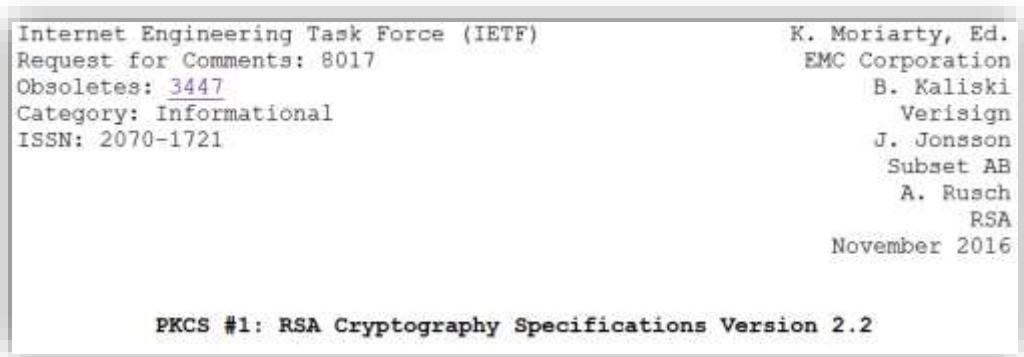
		pqm4	
		Runtime	RAM
Dilithium-2	Sign	19 ms	50 kB
	Verify	7 ms	11 kB
Dilithium-3	Sign	31 ms	69 kB
	Verify	12 ms	10 kB
Dilithium-5	Sign	42 ms	123 kB
	Verify	21 ms	12 kB

NXP PQC [A]		Slower	Smaller
Runtime	RAM	Runtime	RAM
61 ms	5 kB	3.2x	10.0x
16 ms	3 kB	2.3x	3.7x
119 ms	7 kB	3.8x	9.9x
29 ms	3 kB	2.4x	3.3x
168 ms	8 kB	4.0x	15.4x
50 ms	3 kB	2.4x	4.0x

All Dilithium parameter sets will fit on a device with ~8kB memory!

Factor 3 to 4 decrease in performance

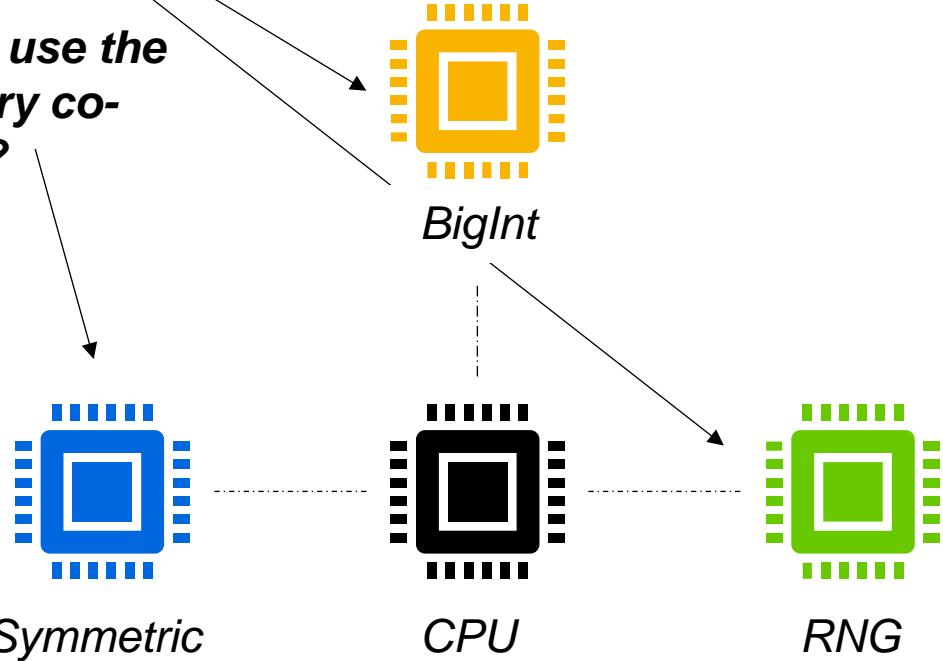

Hardware accelerators will mitigate this



Example of what we do at NXP

Joppe W. Bos, Joost Renes and Christine van Vredendaal: [Polynomial Multiplication with Contemporary Co-Processors: Beyond Kronecker, Schönhage-Strassen & Nussbaumer](#). USENIX Security Symposium 2022.

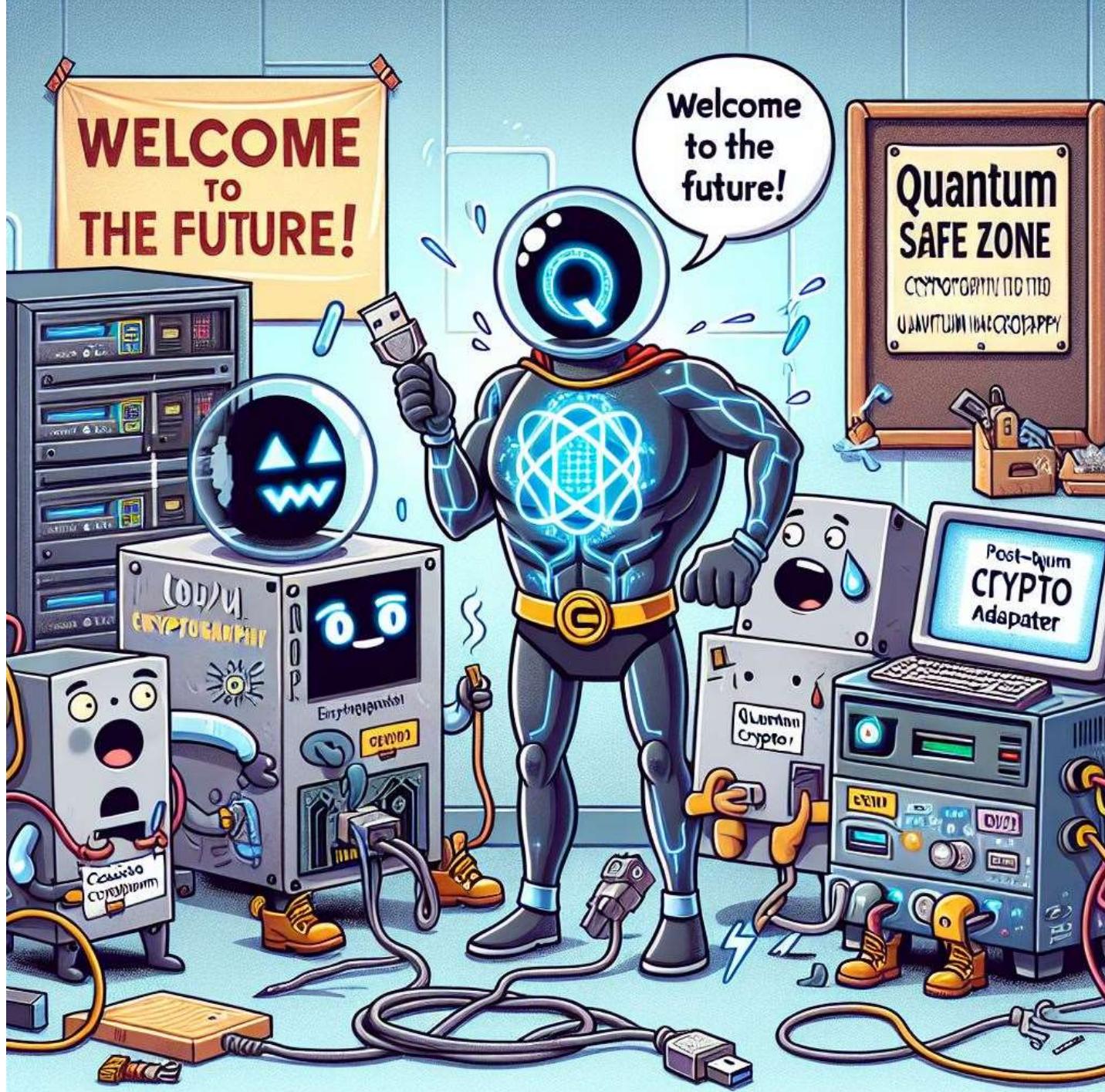

Implementing Classical cryptography

S32G2 automotive
processor spec


Implementing post-quantum cryptography

The screenshot shows the NIST Computer Security Resource Center website. The top navigation bar includes 'NIST', 'Information Technology Laboratory', and 'COMPUTER SECURITY RESOURCE CENTER'. Below this, a 'PROJECTS' section is visible. The main content area is titled 'Post-Quantum Cryptography PQC'. It features a sub-section 'Project Overview' with the following text: 'NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Full details can be found in the [Post-Quantum Cryptography Standardization page](#).'

Lattice-based winners: **Kyber, Dilithium, Falcon (Saber, NTRU, FrodoKEM)**


How can we use the contemporary co-processors?

Re-using existing HW

Approach	Core	Structure	Size
RSA	Modular multiplication	$(\mathbb{Z}/n\mathbb{Z})^*$	n is 3072-bit
ECC	Elliptic curve scalar multiplication	$E(\mathbb{F}_p)$	p is 256-bit
Lattice	Polynomial multiplication	$(\mathbb{Z}/q\mathbb{Z})[X]/(X^n + 1)$	q is 16-bit n is 256

Kronecker substitution

Polynomial domain

$$f = 1 + 2x + 3x^2 + 4x^3$$

$$g = 5 + 6x + 7x^2 + 8x^3$$

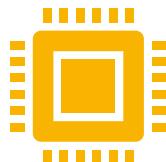
$$\begin{array}{r} \times \\ fg = 5 + 16x + 34x^2 + 60x^3 + 61x^4 + 52x^5 + 32x^6 \\ \hline \end{array}$$

— — — — — — —

**Grundzüge einer arithmetischen Theorie der
algebraischen Grössen.**

(Von L. Kronecker.)

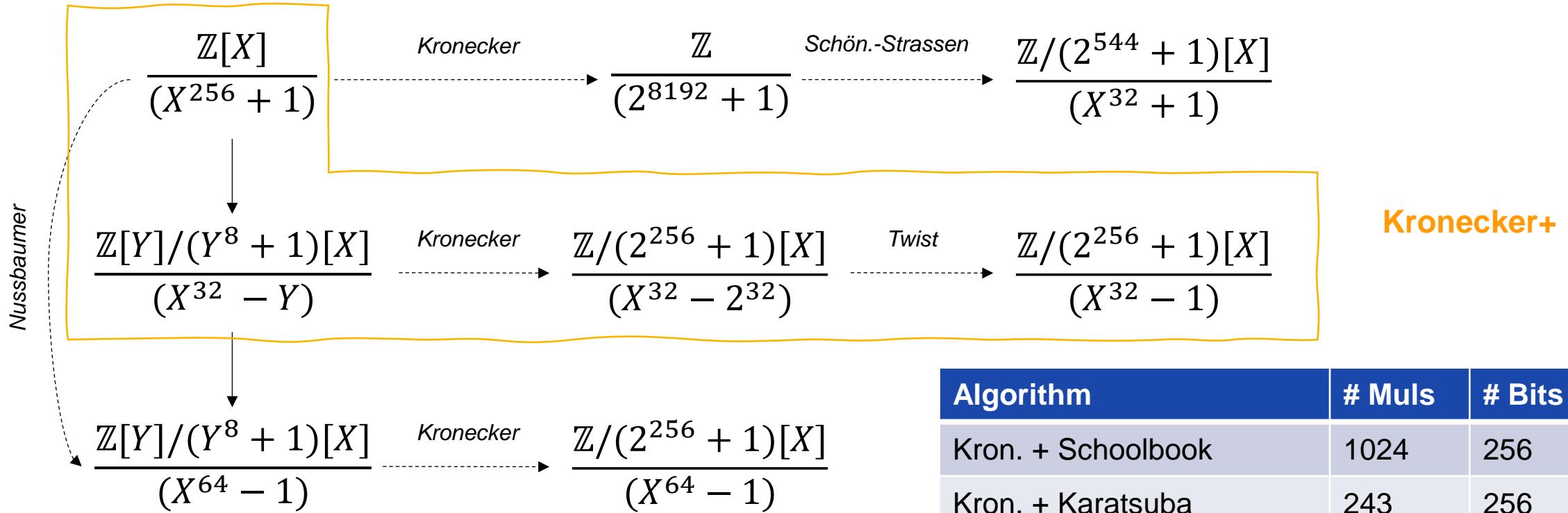
(Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.)


Kronecker domain (with evaluation point 100)

$$f(100) = 4030201$$

$$g(100) = 8070605$$

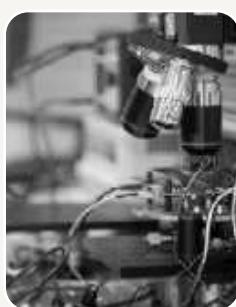
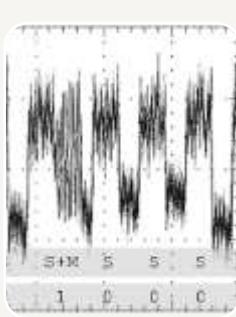
$$\begin{array}{r} \times \\ fg(100) = 32526160341605 \\ \hline \end{array}$$


— — — — — — —

Polynomial multiplication techniques

Kronecker evaluation at 2^{32}

Multiplication with a 256-bit multiplier



[A] Albrecht, Hanser, Hoeller, Pöppelmann, Virdia, Wallner; Implementing RLWE-based schemes using an RSA co-processor. TCHES 2019

[B] Harvey. Faster polynomial multiplication via multipoint Kronecker substitution. J. of Sym. Comp. 2009.

[C] Bos, Renes, van Vredendaal: Polynomial Multiplication with Contemporary Co-Processors: Beyond Kronecker, Schönhage-Strassen & Nussbaumer. USENIX Security Symposium 2022.

Algorithm	# Muls	# Bits
Kron. + Schoolbook	1024	256
Kron. + Karatsuba	243	256
Kron. + Toom-Cook	63	256
Kron. + Schön.-Strassen	32	544
Nussbaumer + Kron.	64	256
Kronecker+	32	256

Resistance against physical & logical attacks

Side-channel attacks

- Power analysis (SPA, DPA)
- Electromagnetic analysis (SEMA, DEMA)
- Timing Analysis
- Photo-emission microscopy (high-end)
- Profiled, unprofiled and ML-assisted variants

Fault injection attacks

- Voltage or clock glitching
- Electromagnetic fault injection (EMFI)
- Body bias injection
- Laser fault injection
- Single and multi-shot scenarios

Invasive attack

- Focused Ion Beam (FIB) modifications
- Micro/Nano-probing of internal signals
- Signal forcing
- Delayering
- Reverse-engineering

Embedded cryptography and implementation attacks

Attacks

Deep understanding
in both academia
and industry.

Classic Cryptography

AES 3DES
DSA... ECDSA
RSA ECC

Countermeasures

Practically secure
and certified
implementations.

Embedded cryptography and implementation attacks

Attacks

Deep understanding in both academia and industry.

Classic Cryptography

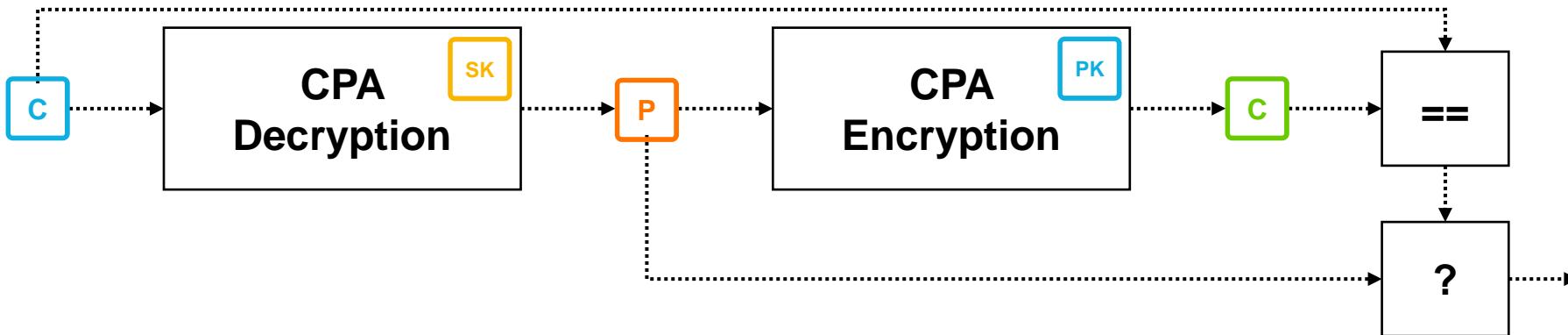
AES 3DES
DSA... ECDSA
RSA ECC

Countermeasures

Practically secure and certified implementations.

Post-Quantum Cryptography

Active research area resulting in increasingly powerful attacks.

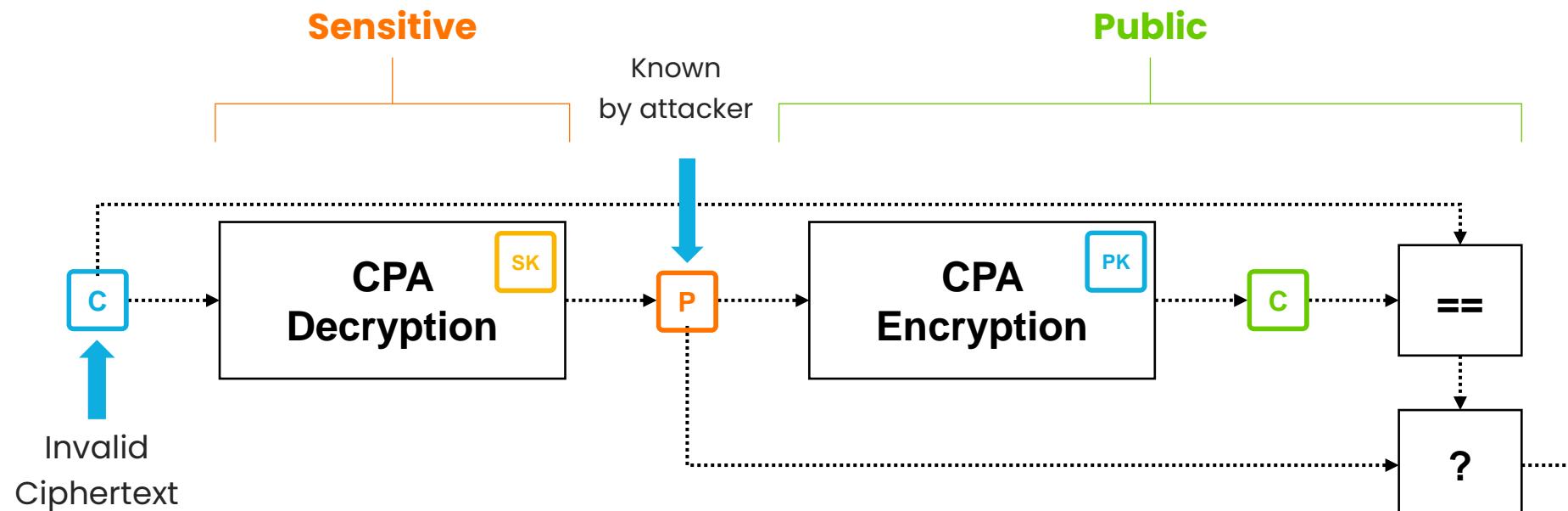


Kyber
Dilithium ...
SPHINCS+
XMSS

Early stage of academic research. Limited industrial results.

Fujisaki Okamoto transform

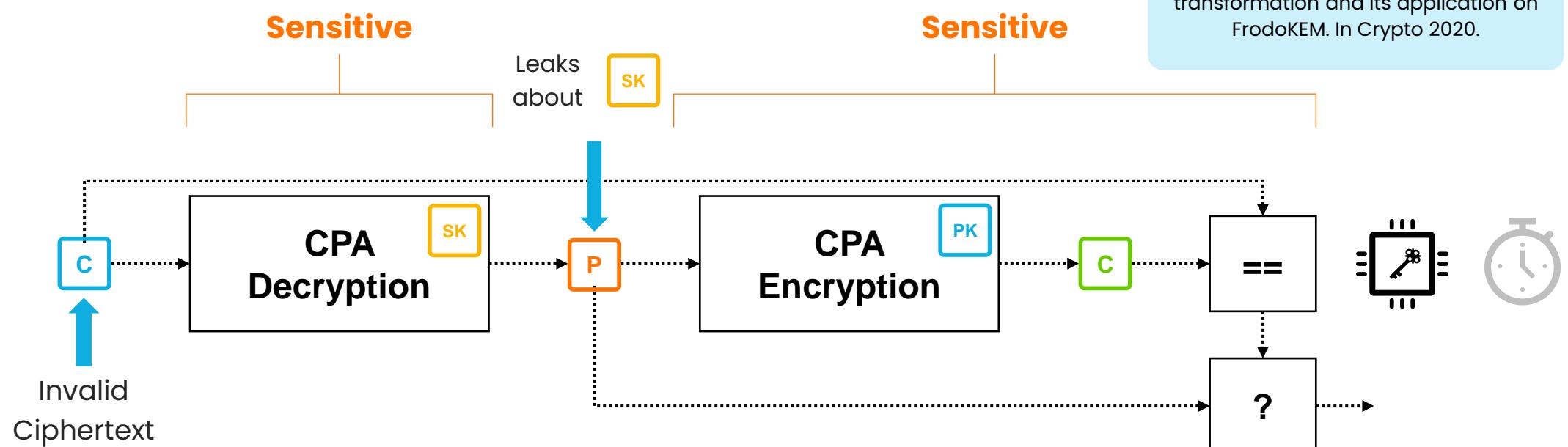
Transform a scheme which achieves **IND-CPA**
("chosen plaintext attack") security to reach **IND-CCA**
("indistinguishability against chosen-ciphertext attacks") security


Fujisaki, E. and Okamoto
T., Secure integration of
asymmetric and symmetric
encryption schemes, CRYPTO
1999 and JoC 2013

The SCA Problem of the FO-Transform

Attack 1: Chosen Plaintext

- Attacker inputs only valid ciphertexts
- Attack focuses on **CPA Decryption**, everything after (and including) **P** is public
- Only need to protect **CPA Decryption**



The SCA Problem of the FO-Transform

Attack 2: Chosen Ciphertext

- Attacker inputs specially-crafted invalid ciphertexts
- Attack focuses on **CPA Decryption** + everything after (and including) **P** is potentially sensitive
- Potentially all (or most) modules need to be hardened

From Theory to practice: Secure implementations (NXP PQC Team)

Only with carefully managed maximum number of issued signatures

Year	Venue	FIPS 203	FIPS 204	Title
2021	TCHES			Masking Kyber: First- and Higher-Order Implementations
2021	RWC			Post-Quantum Crypto: The Embedded Challenge
2022	TCHES			Post-Quantum Authenticated Encryption against Chosen-Ciphertext SCA
2022	RWC			Surviving the FO-calypse: Securing PQC Implementations in Practice
2023	TCHES			From MLWE to RLWE: A Differential Fault Attack on Randomized & Deterministic Dilithium
2023	TCHES			Protecting Dilithium Against Leakage Revisited Sensitivity Analysis
2024	RWC			Lessons Learning from Protecting CRYSTALS-Dilithium
2024	TCHES			Exploiting Small-Norm Polynomial Multiplication with Physical Attacks
2024	RWC			Challenges of Migration to PQ Secure Embedded Systems

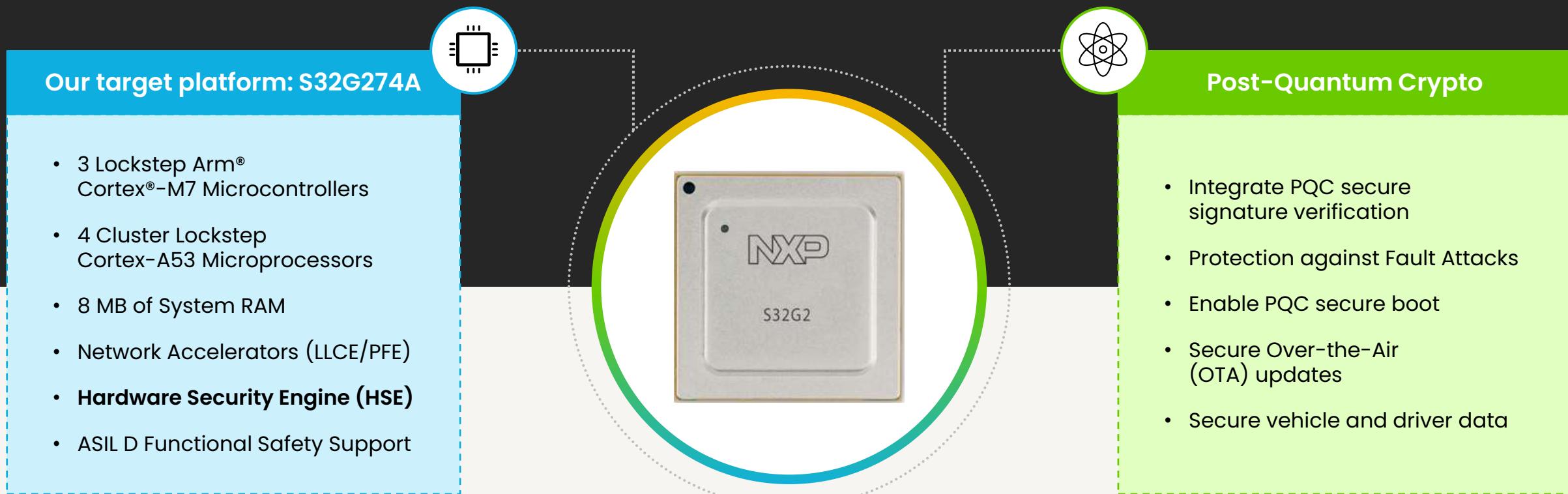
First completely masked implementation of Kyber / FIPS 203 !

Completely masked implementation of Dilithium / FIPS 204 !

Industrial & IoT

i.MX 94 Family of Applications Processors Delivers Safe and Secure Industrial and Automotive Connectivity with Real-Time Control

Samples available in 1H, 2025


Security

- **First NXP apps processor supporting Post-Quantum Cryptography**
- EdgeLock Secure Enclave with Cyber Resilience Recovery Module

Including
✓ Secure boot,
✓ Secure update
✓ Secure debug
of the processor based on PQC

Customer products in-the-field for 10-15 years, PQC a wanted feature!

NXP S32G2 vehicle network processor with PQC integration

www.nxp.com/S32G2

Benchmarks for authentication of FW signature on the S32G2

Alg.	Size		Performance (ms)			
			1 KB		128 KB	
	PK	Sig.	Inst.	Boot	Inst.	Boot
RSA 4K	512	512	2.6	0.0	2.7	0.2
ECDSA-p256	64	64	6.2	0.0	6.4	0.2
Dilithium-3	1952	3293	16.7	0.0	16.9	0.2

Demonstrator only, further optimizations are possible (such as hardware accelerated SHA-3)

Signature verification only required once for installation!

During boot the signature verification can be replaced with a check of the Reference Proof of Authenticity

Extended Access Control (EAC)

Protocol	Goal
Passive Authentication	Authenticate to check integrity of the data stored in the chip
PACE	Set up a communication channel between chip and terminal
Terminal Authentication	Authorize terminal to view sensitive biometrics
Chip Authentication	Prevent sensitive data copy and prove chip authentication

NXP Recommendations (ICAO)

- Migrate country signing certificates with highest priority
- CSCA / CVCA: **SP 800-208**
- Document signers: **ML-DSA**
- Consider ML-KEM based EAC to avoid variable signing time and decrease key size
- PACE migration lower priority

*Working with Darmstadt University of Applied Sciences on a PQC PAKE proof of concept for SmartMX P71
See: <https://eprint.iacr.org/2025/812>*

Many more activities ongoing with GP, GSMA (eSIM), TCG, Javacard, etc. !

Summary

Migration recommended & requested by ecosystem

- Harvest-now, decrypt-later
- Software/firmware signing
- More use cases in a phased / hybrid migration!

Many practical challenges & solutions

- Algorithm design (ML-KEM)
- Low-memory implementations
- Protection against side-channel analysis (SCA) and Fault Injection (FI)
- Hardware acceleration (SHA-3)

First Post-Quantum Cryptography standards ready for adoption (ML-KEM, ML-DSA, SLH-DSA, LMS/XMSS)

Exciting times to work in cryptography!

Get in touch!

Joppe W. Bos

joppe.bos@nxp.com

nxp.com

Brighter Together